A228957
Numbers n such that n/rad(n) is greater than the greatest prime dividing n.
Original entry on oeis.org
8, 16, 24, 27, 32, 36, 48, 54, 64, 72, 80, 81, 96, 100, 108, 112, 125, 128, 135, 144, 160, 162, 180, 189, 192, 196, 200, 216, 224, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 336, 343, 352, 360, 375, 378, 384, 392, 400, 405, 416, 432, 441, 448, 450, 480
Offset: 1
24 is in the sequence because the prime divisors of 24 are 2 and 3 and 24/2*3 > 3.
-
with(numtheory) :for n from 1 to 400 do:x:=factorset(n):n1:=nops(x): p:= product('x[i]', 'i'=1..n1):m:=n/p:if m> x[n1]then printf(`%d, `,n):else fi:od:
-
rad[n_]:=Times@@(First@#&/@FactorInteger@n);Select[Range[2,1000],FactorInteger[#][[-1,1]]<#/rad[#]&]
nrQ[n_]:=Module[{x=FactorInteger[n][[All,1]]},n/Times@@x>Last[x]]; Select[Range[ 500],nrQ] (* Harvey P. Dale, Jun 15 2022 *)
-
is(n)=my(f=factor(n)); prod(i=1,#f~,f[i,1]^(f[i,2]-1)) > f[#f~,1] \\ Charles R Greathouse IV, Sep 09 2013
A370266
Numbers k that are not prime powers, such that k/rad(k) >= rad(k), where rad(k) = A007947(k).
Original entry on oeis.org
36, 48, 54, 72, 96, 100, 108, 144, 160, 162, 192, 196, 200, 216, 224, 225, 250, 288, 320, 324, 375, 384, 392, 400, 405, 432, 441, 448, 484, 486, 500, 567, 576, 640, 648, 675, 676, 686, 704, 768, 784, 800, 832, 864, 896, 900, 960, 968, 972, 1000, 1029, 1080, 1089
Offset: 1
For s = 6, this sequence contains {36, 48, 54, 72, 96, ...}, i.e., A033845(n) for n >= A010846(6).
For s = 10, this sequence contains {100, 160, 200, 250, 320, ...}, i.e., A033846(n) for n >= A010846(10).
For s = 14, this sequence contains {196, 224, 392, 448, 686, ...}, i.e., A033847(n) for n >= A010846(14).
For s = 15, this sequence contains {225, 375, 405, 675, 1125, ...}, i.e., A033849(n) for n >= A010846(15), etc.
-
Select[Select[Range[2, 1100], Not@*PrimePowerQ], #1/#2 >= #2 & @@ {#, Times @@ FactorInteger[#][[All, 1]]} &]
A367511
Highly composite numbers h(k) = A002182(k) such that h >= rad(h)^2, where rad() = A007947().
Original entry on oeis.org
1, 4, 36, 48, 45360, 50400
Offset: 1
Let P(n) = A002110(n).
a(1) = h(1) = 1 since 1 >= 1^2.
a(2) = h(3) = 4 since 4 >= P(1)^2, 4 >= 2^2.
a(3) = h(7) = 36 since 36 >= P(2)^2, 36 >= 6^2.
a(4) = h(8) = 48 since 48 >= P(2)^2, 48 >= 6^2.
a(5) = h(26) = 43560 since 43560 >= P(4)^2, where P(4) = 210, and 210^2 = 44100.
a(6) = h(27) = 50400 since 50400 >= P(4)^2.
Let V(i) = A301414(i) and let P(j) = A002110(j).
Plot of highly composite h = V(i)*P(j) at (x,y) = (j,i), i = 1..16, j = 1..7, showing h in this sequence in parentheses, and h in A168263 marked with an asterisk (*):
V(i)\P(j) 1 2 6 30 210 2310 30030 ...
+---------------------------------------
1 |(1*) 2* 6*
2 | (4*) 12* 60*
4 | 24* 120* 840*
6 | (36) 180* 1260*
8 | (48) 240 1680*
12 | 360 2520 27720*
24 | 720 5040 55440 720720
36 | 7560 83160 1081080
48 | 10080 110880 1441440
72 | 15120 166320 2162160
96 | 20160 221760 2882880
120 | 25200 277200 3603600
144 | 332640 4324320
216 | (45360) 498960 6486480
240 | (50400) 554400 7207200
...
Cf.
A001221,
A002110,
A002182,
A007947,
A025487,
A108602,
A126706,
A131605,
A168263,
A286708,
A301413,
A301414,
A303606,
A332785,
A365308,
A362702,
A366250.
-
(* First load function f at A025487, then run the following: *)
s = Union@ Flatten@ f[12];
t = Map[DivisorSigma[0, #] &, s];
h = Map[s[[FirstPosition[t, #][[1]]]] &, Union@ FoldList[Max, t]];
Reap[Do[If[# >= Product[Prime[j], {j, PrimeNu[#]}]^2, Sow[#]] &[ h[[i]] ],
{i, Length[h]}] ][[-1, 1]]
A367708
Numbers k that are neither squarefree nor prime powers such that max(A119288(k), A053669(k)) <= A003557(k) < A007947(k).
Original entry on oeis.org
50, 75, 80, 98, 112, 135, 147, 189, 240, 242, 245, 252, 270, 294, 300, 336, 338, 350, 352, 360, 363, 378, 396, 416, 450, 468, 480, 490, 504, 507, 525, 528, 540, 550, 560, 578, 588, 594, 600, 605, 612, 624, 650, 672, 684, 700, 702, 720, 722, 726, 735, 750, 756
Offset: 1
Let q = A053669(k) and let p = A119288(k).
For s = 10, we have {50, 80}, since
s * { max(p, q) <= m < s : rad(m) | s }
= 10*{ max(5, 3) <= m < 10 : rad(m) | 10 }
= 10*{5, 8} = {50, 80}.
For s = 15, we have {45, 135}, since
s * { max(p, q) <= m < s : rad(m) | s }
= 15*{ max(5, 2) <= m < 15 : rad(m) | 15 }
= 15*{5, 9} = {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
For s = 30, we have {45, 135}, since
s * { max(p, q) <= m < s : rad(m) | s }
= 30*{ max(3, 7) <= m < 30 : rad(m) | 30 }
= 30*{8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27}
= {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
Cf.
A002182,
A003586,
A053669,
A119288,
A120944,
A168263,
A341645,
A361098,
A364702,
A366250,
A367511.
-
nn = 756;
Select[Select[Range[12, nn], Nor[SquareFreeQ[#], PrimePowerQ[#]] &],
And[Max[#2, #3] <= #1 < #4, ! AllTrue[#5, # > 1 &]] & @@
{#1/#4, #2, #3, #4, #5} & @@
{#1, #2[[2, 1]], #3, Times @@ #2[[All, 1]], #2[[All, -1]]} & @@
{#, FactorInteger[#], If[OddQ[#], 2,
q = 3; While[Divisible[#, q], q = NextPrime[q]]; q]} &]
Showing 1-4 of 4 results.
Comments