cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A228957 Numbers n such that n/rad(n) is greater than the greatest prime dividing n.

Original entry on oeis.org

8, 16, 24, 27, 32, 36, 48, 54, 64, 72, 80, 81, 96, 100, 108, 112, 125, 128, 135, 144, 160, 162, 180, 189, 192, 196, 200, 216, 224, 225, 240, 243, 250, 256, 270, 288, 300, 320, 324, 336, 343, 352, 360, 375, 378, 384, 392, 400, 405, 416, 432, 441, 448, 450, 480
Offset: 1

Views

Author

Michel Lagneau, Sep 09 2013

Keywords

Comments

n such that n/rad(n)> gpf(n); numbers n such that n/A007947(n) > A006530(n) where A007947 is the product of the distinct prime factors of n and A006530 is the greatest prime dividing n.
The sequence A137845 (logarithmically smooth numbers)is included in this sequence.
It appears that there exists consecutive numbers such that (80,81), (224,225), (675,676), (1088,1089), (1215,1216), (2375,2376), (2400,2401), (2600, 2601), (3024,3025), (3249,3250), (3968,3969), (4224,4225), (4374,4375), (5831,5832),...
But it appears also that (2400,2401) and (4374,4375) are the only consecutive numbers in the sequence A137845.

Examples

			24 is in the sequence because the prime divisors of 24 are 2 and 3 and 24/2*3 > 3.
		

Crossrefs

A366250 is a subsequence.

Programs

  • Maple
    with(numtheory) :for n from 1 to 400 do:x:=factorset(n):n1:=nops(x): p:= product('x[i]', 'i'=1..n1):m:=n/p:if m> x[n1]then printf(`%d, `,n):else fi:od:
  • Mathematica
    rad[n_]:=Times@@(First@#&/@FactorInteger@n);Select[Range[2,1000],FactorInteger[#][[-1,1]]<#/rad[#]&]
    nrQ[n_]:=Module[{x=FactorInteger[n][[All,1]]},n/Times@@x>Last[x]]; Select[Range[ 500],nrQ] (* Harvey P. Dale, Jun 15 2022 *)
  • PARI
    is(n)=my(f=factor(n)); prod(i=1,#f~,f[i,1]^(f[i,2]-1)) > f[#f~,1] \\ Charles R Greathouse IV, Sep 09 2013

A370266 Numbers k that are not prime powers, such that k/rad(k) >= rad(k), where rad(k) = A007947(k).

Original entry on oeis.org

36, 48, 54, 72, 96, 100, 108, 144, 160, 162, 192, 196, 200, 216, 224, 225, 250, 288, 320, 324, 375, 384, 392, 400, 405, 432, 441, 448, 484, 486, 500, 567, 576, 640, 648, 675, 676, 686, 704, 768, 784, 800, 832, 864, 896, 900, 960, 968, 972, 1000, 1029, 1080, 1089
Offset: 1

Views

Author

Michael De Vlieger, Feb 18 2024

Keywords

Comments

Numbers k = m * s, where s is composite and squarefree, rad(m) | s, and m >= s.
A177492 is a proper subset.

Examples

			For s = 6, this sequence contains {36, 48, 54, 72, 96, ...}, i.e., A033845(n) for n >= A010846(6).
For s = 10, this sequence contains {100, 160, 200, 250, 320, ...}, i.e., A033846(n) for n >= A010846(10).
For s = 14, this sequence contains {196, 224, 392, 448, 686, ...}, i.e., A033847(n) for n >= A010846(14).
For s = 15, this sequence contains {225, 375, 405, 675, 1125, ...}, i.e., A033849(n) for n >= A010846(15), etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[2, 1100], Not@*PrimePowerQ], #1/#2 >= #2 & @@ {#, Times @@ FactorInteger[#][[All, 1]]} &]

Formula

Set difference of A341645 and A246547.
Intersection of A341645 and A126706.
Union of A286708 and A366250.

A367511 Highly composite numbers h(k) = A002182(k) such that h >= rad(h)^2, where rad() = A007947().

Original entry on oeis.org

1, 4, 36, 48, 45360, 50400
Offset: 1

Views

Author

Michael De Vlieger, Feb 08 2024

Keywords

Comments

Alternatively, this sequence lists h(k) such that A301413(k) >= A002110(A108602(k)), where A301413 is the "variable part" v described on page 5 of 12 of the Siano paper.
This sequence is likely finite and full. See Chapter III regarding the structure of "Highly Composite Numbers".
Terms larger than 36 are in A366250; A366250 is in A364702, which is in turn a proper subset of A332785, itself contained in A126706.
36 is in A365308, a proper subset of A303606, contained in A131605, in turn contained in A286708.

Examples

			Let P(n) = A002110(n).
a(1) = h(1) = 1 since 1 >= 1^2.
a(2) = h(3) = 4 since 4 >= P(1)^2, 4 >= 2^2.
a(3) = h(7) = 36 since 36 >= P(2)^2, 36 >= 6^2.
a(4) = h(8) = 48 since 48 >= P(2)^2, 48 >= 6^2.
a(5) = h(26) = 43560 since 43560 >= P(4)^2, where P(4) = 210, and 210^2 = 44100.
a(6) = h(27) = 50400 since 50400 >= P(4)^2.
Let V(i) = A301414(i) and let P(j) = A002110(j).
Plot of highly composite h = V(i)*P(j) at (x,y) = (j,i), i = 1..16, j = 1..7, showing h in this sequence in parentheses, and h in A168263 marked with an asterisk (*):
V(i)\P(j) 1   2    6   30   210    2310    30030 ...
        +---------------------------------------
      1 |(1*) 2*   6*
      2 |    (4*) 12*  60*
      4 |         24* 120*  840*
      6 |        (36) 180* 1260*
      8 |        (48) 240  1680*
     12 |             360  2520   27720*
     24 |             720  5040   55440   720720
     36 |                  7560   83160  1081080
     48 |                 10080  110880  1441440
     72 |                 15120  166320  2162160
     96 |                 20160  221760  2882880
    120 |                 25200  277200  3603600
    144 |                        332640  4324320
    216 |                (45360) 498960  6486480
    240 |                (50400) 554400  7207200
    ...
		

Crossrefs

Programs

  • Mathematica
    (* First load function f at A025487, then run the following: *)
    s = Union@ Flatten@ f[12];
    t = Map[DivisorSigma[0, #] &, s];
    h = Map[s[[FirstPosition[t, #][[1]]]] &, Union@ FoldList[Max, t]];
    Reap[Do[If[# >= Product[Prime[j], {j, PrimeNu[#]}]^2, Sow[#]] &[ h[[i]] ],
      {i, Length[h]}] ][[-1, 1]]

A367708 Numbers k that are neither squarefree nor prime powers such that max(A119288(k), A053669(k)) <= A003557(k) < A007947(k).

Original entry on oeis.org

50, 75, 80, 98, 112, 135, 147, 189, 240, 242, 245, 252, 270, 294, 300, 336, 338, 350, 352, 360, 363, 378, 396, 416, 450, 468, 480, 490, 504, 507, 525, 528, 540, 550, 560, 578, 588, 594, 600, 605, 612, 624, 650, 672, 684, 700, 702, 720, 722, 726, 735, 750, 756
Offset: 1

Views

Author

Michael De Vlieger, Feb 09 2024

Keywords

Comments

Does not contain 3-smooth numbers.
Contains neither A168263 nor A367511.
Conjecture: contains most highly composite numbers.

Examples

			Let q = A053669(k) and let p = A119288(k).
For s = 10, we have {50, 80}, since
    s * { max(p, q) <= m < s  : rad(m) | s  }
   = 10*{ max(5, 3) <= m < 10 : rad(m) | 10 }
   = 10*{5, 8} = {50, 80}.
For s = 15, we have {45, 135}, since
    s * { max(p, q) <= m < s  : rad(m) | s  }
   = 15*{ max(5, 2) <= m < 15 : rad(m) | 15 }
   = 15*{5, 9} = {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
For s = 30, we have {45, 135}, since
    s * { max(p, q) <= m < s  : rad(m) | s  }
   = 30*{ max(3, 7) <= m < 30 : rad(m) | 30 }
   = 30*{8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27}
   = {240, 270, 300, 360, 450, 480, 540, 600, 720, 750, 810}.
		

Crossrefs

Programs

  • Mathematica
    nn = 756;
    Select[Select[Range[12, nn], Nor[SquareFreeQ[#], PrimePowerQ[#]] &],
      And[Max[#2, #3] <= #1 < #4, ! AllTrue[#5, # > 1 &]] & @@
        {#1/#4, #2, #3, #4, #5} & @@
        {#1, #2[[2, 1]], #3, Times @@ #2[[All, 1]], #2[[All, -1]]} & @@
        {#, FactorInteger[#], If[OddQ[#], 2,
            q = 3; While[Divisible[#, q], q = NextPrime[q]]; q]} &]

Formula

Union of {k = m*s : rad(m) | s, max(p, q) <= m < s}, where s is in A120944.
{a(n)} = A364702 \ A366250.
{a(n)} = A361098 \ A341645.
Showing 1-4 of 4 results.