cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A361098 Intersection of A360765 and A360768.

Original entry on oeis.org

36, 48, 50, 54, 72, 75, 80, 96, 98, 100, 108, 112, 135, 144, 147, 160, 162, 189, 192, 196, 200, 216, 224, 225, 240, 242, 245, 250, 252, 270, 288, 294, 300, 320, 324, 336, 338, 350, 352, 360, 363, 375, 378, 384, 392, 396, 400, 405, 416, 432, 441, 448, 450, 468, 480, 484, 486, 490, 500, 504, 507, 525
Offset: 1

Views

Author

Michael De Vlieger, Mar 15 2023

Keywords

Comments

Numbers k that are neither prime powers nor squarefree, such that rad(k) * A053669(k) < k and k/rad(k) >= A119288(k), where rad(k) = A007947(k).
Numbers k such that A360480(k), A360543(k), A361235(k), and A355432(k) are positive.
Subset of A126706. All terms are neither prime powers nor squarefree.
From Michael De Vlieger, Aug 03 2023: (Start)
Superset of A286708 = A001694 \ {{1} U A246547}, which in turn is a superset of A303606. We may write k in A286708 as m*rad(k)^2, m >= 1. Since omega(k) > 1, it is clear both k/rad(k) > A053669(k) and k/rad(k) >= A119288(k). Also superset of A359280 = A286708 \ A303606.
This sequence contains {A002182 \ A168263}. (End)

Examples

			For prime p, A360480(p) = A360543(p) = A361235(p) = A355432(p) = 0, since k < p is coprime to p.
For prime power n = p^e > 4, e > 0, A360543(n) = p^(e-1) - e, but A360480(n) = A361235(n) = A355432(n) = 0, since the other sequences require omega(n) > 1.
For squarefree composite n, A360480(n) >= 1 and A361235(n) >= 1 (the latter for n > 6), but A360543(n) = A355432(n) = 0, since the other sequences require at least 1 prime power factor p^e | n with e > 0.
For n = 18, A360480(n) = | {10, 14, 15} | = 3,
            A360543(n) = | {} | = 0,
            A361235(n) = | {4, 8, 16} | = 3,
            A355432(n) = | {12} | = 1.
Therefore 18 is not in the sequence.
For n = 36, A360480(n) = | {10, 14, 15, 20, 21, 22, 26, 28, 33, 34} | = 10,
            A360543(n) = | {30} | = 1,
            A361235(n) = | {8, 16, 27, 32} | = 4,
            A355432(n) = | {24} | = 1.
Therefore 36 is the smallest term in the sequence.
Table pertaining to the first 12 terms:
Key: a = A360480, b = A360543, c = A243823; d = A361235, e = A355432, f = A243822;
g = A046753 = f + c, tau = A000005, phi = A000010.
    n |  a + b =  c | d + e = f | g + tau + phi - 1 =  n
  ------------------------------------------------------
   36 | 10 + 1 = 11 | 4 + 1 = 5 | 16 +  9 + 12 - 1 =  36
   48 | 16 + 2 = 18 | 3 + 2 = 5 | 23 + 10 + 16 - 1 =  48
   50 | 18 + 1 = 19 | 4 + 2 = 6 | 25 +  6 + 20 - 1 =  50
   54 | 19 + 2 = 21 | 4 + 4 = 8 | 29 +  8 + 18 - 1 =  54
   72 | 27 + 4 = 31 | 4 + 2 = 6 | 37 + 12 + 24 - 1 =  72
   75 | 25 + 2 = 27 | 2 + 1 = 3 | 30 +  6 + 40 - 1 =  75
   80 | 32 + 3 = 35 | 3 + 1 = 4 | 39 + 10 + 32 - 1 =  80
   96 | 38 + 7 = 45 | 4 + 4 = 8 | 53 + 12 + 32 - 1 =  96
   98 | 41 + 3 = 44 | 5 + 2 = 7 | 51 +  6 + 42 - 1 =  98
  100 | 42 + 4 = 46 | 4 + 2 = 6 | 52 +  9 + 40 - 1 = 100
  108 | 44 + 8 = 52 | 5 + 4 = 9 | 61 + 12 + 36 - 1 = 108
  112 | 48 + 3 = 51 | 3 + 1 = 4 | 55 + 10 + 48 - 1 = 112
		

Crossrefs

Programs

  • Mathematica
    nn = 2^16;
    a053669[n_] := If[OddQ[n], 2, p = 2; While[Divisible[n, p], p = NextPrime[p]]; p];
    s = Select[Range[nn], Nor[PrimePowerQ[#], SquareFreeQ[#]] &];
    Reap[ Do[n = s[[j]];
        If[And[#1*a053669[n] < n, n/#1 >= #2] & @@ {Times @@ #, #[[2]]} &@
          FactorInteger[n][[All, 1]], Sow[n]], {j, Length[s]}]][[-1, -1]]

A364996 Union of A360767 and A363082.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 52, 56, 60, 63, 68, 76, 84, 88, 90, 92, 99, 104, 116, 117, 120, 124, 126, 132, 136, 140, 148, 150, 152, 153, 156, 164, 168, 171, 172, 175, 176, 180, 184, 188, 198, 204, 207, 208, 212, 220, 228, 232, 234, 236, 244, 248, 260, 261
Offset: 1

Views

Author

Michael De Vlieger, Aug 26 2023

Keywords

Examples

			This sequence is A126706 \ A361098.
Union of A364997, A364998, A364999.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[261], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, Or[p r > k, q r > k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]

A359350 Irregular triangle T(n,k) (n >= 1, k >= 1) read by rows: row n is constructed by replacing A336811(n,k) with the largest partition into consecutive parts of A000217(A336811(n,k)).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 1, 4, 3, 2, 1, 2, 1, 1, 5, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 1, 6, 5, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 2, 1, 1, 1, 7, 6, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 3, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 8, 7, 6, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Dec 27 2022

Keywords

Comments

All divisors of all terms in row n are also all parts of all partitions of n.
The terms of row n listed in nonincreasing order give the n-th row of A176206.
The number of k's in row n is equal to A000041(n-k), 1 <= k <= n.
The number of terms >= k in row n is equal to A000070(n-k), 1 <= k <= n.
The number of k's in the first n rows (or in the first A014153(n-1) terms of the sequence) is equal to A000070(n-k), 1 <= k <= n.
The number of terms >= k in the first n rows (or in the first A014153(n-1) terms of the sequence) is equal to A014153(n-k), 1 <= k <= n.
Row n is constructed replacing A336811(n,k) with the largest partition into consecutive parts of A359279(n,k).

Examples

			Triangle begins:
  1;
  2, 1;
  3, 2, 1, 1;
  4, 3, 2, 1, 2, 1, 1;
  5, 4, 3, 2, 1, 3, 2, 1, 2, 1, 1, 1;
  6, 5, 4, 3, 2, 1, 4, 3, 2, 1, 3, 2, 1, 2, 1, 2, 1, 1, 1;
  ...
Or also the triangle begins:
  [1];
  [2, 1];
  [3, 2, 1],          [1];
  [4, 3, 2, 1],       [2, 1],       [1];
  [5, 4, 3, 2, 1],    [3, 2, 1],    [2, 1],    [1],    [1];
  [6, 5, 4, 3, 2, 1], [4, 3, 2, 1], [3, 2, 1], [2, 1], [2, 1], [1], [1];
  ...
For n = 3 the third row is [3, 2, 1, 1]. The divisors of these terms are [1, 3], [1, 2], [1], [1]. These six divisors are also all parts of all partitions of 3. They are [3], [2, 1], [1, 1, 1].
		

Crossrefs

Row sums give A014153 (convolution of A000041 and A000027).
Row lengths give A000070.
Row n has A000041(n-1) blocks.
This triangle has the same row sums as A176206, A299779 and A359279.

Programs

  • Mathematica
    A359350row[n_]:=Flatten[Table[ConstantArray[Range[n-m,1,-1],PartitionsP[m]-PartitionsP[m-1]],{m,0,n-1}]];Array[A359350row,10] (* Paolo Xausa, Sep 01 2023 *)

A380857 Squares of numbers that are neither squarefree nor prime powers.

Original entry on oeis.org

144, 324, 400, 576, 784, 1296, 1600, 1936, 2025, 2304, 2500, 2704, 2916, 3136, 3600, 3969, 4624, 5184, 5625, 5776, 6400, 7056, 7744, 8100, 8464, 9216, 9604, 9801, 10000, 10816, 11664, 12544, 13456, 13689, 14400, 15376, 15876, 17424, 18225, 18496, 19600, 20736
Offset: 1

Views

Author

Michael De Vlieger, Feb 06 2025

Keywords

Comments

Proper subset of A359280 which is a proper subset of A286708 (powerful numbers that are not prime powers, a proper subset of A126706).
Does not intersect A362605.

Crossrefs

Cf. A059404, A126706, A177492 (k^2 for k in A120944), A286708, A359280, A362605, A378768 (k^2 for k in A286708).

Programs

  • Mathematica
    Select[Range[150], Nor[PrimePowerQ[#], SquareFreeQ[#]] &]^2
  • PARI
    isok(k) = !issquarefree(k) && !isprimepower(k); \\ A126706
    apply(sqr, select(isok, [1..200])) \\ Michel Marcus, Feb 07 2025
    
  • Python
    from math import isqrt
    from sympy import primepi, integer_nthroot, mobius
    def A380857(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+sum(primepi(integer_nthroot(x,k)[0]) for k in range(2,x.bit_length()))+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)))
        return bisection(f,n,n)**2 # Chai Wah Wu, Feb 08 2025

Formula

a(n) = A126706(n)^2.
Sum_{n>=1} 1/a(n) = Pi^2/6 - 15/Pi^2 - Sum_{p prime} 1/(p^2*(p^2-1)) = A013661 - A082020 + A085548 - A154945 = 0.025670434597226178881... . - Amiram Eldar, Feb 08 2025
Showing 1-4 of 4 results.