A112926 Smallest squarefree integer > the n-th prime.
3, 5, 6, 10, 13, 14, 19, 21, 26, 30, 33, 38, 42, 46, 51, 55, 61, 62, 69, 73, 74, 82, 85, 91, 101, 102, 105, 109, 110, 114, 129, 133, 138, 141, 151, 154, 158, 165, 170, 174, 181, 182, 193, 194, 199, 201, 213, 226, 229, 230, 235, 241, 246, 253, 258, 265, 271, 273
Offset: 1
Keywords
Examples
10 is the smallest squarefree number greater than the 4th prime, 7. So a(4) = 10. From _Gus Wiseman_, Dec 07 2024: (Start) The first number line below shows the squarefree numbers. The second shows the primes: --1--2--3-----5--6--7-------10-11----13-14-15----17----19----21-22-23-------26-- =====2==3=====5=====7==========11====13==========17====19==========23=========== (End)
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a:=proc(n) local p,B,j: p:=ithprime(n): B:={}: for j from p+1 to p+20 do if abs(mobius(j))>0 then B:=B union {j} else B:=B fi od: B[1] end: seq(a(m),m=1..75); # Emeric Deutsch, Oct 10 2005
-
Mathematica
Do[k = Prime[n] + 1; While[ !SquareFreeQ[k], k++ ]; Print[k], {n, 1, 100}] (* Ryan Propper, Oct 10 2005 *) With[{k = 120}, Table[SelectFirst[Range[Prime@ n + 1, Prime@ n + k], SquareFreeQ], {n, 58}]] (* Michael De Vlieger, Aug 16 2017 *)
-
PARI
a(n,p=prime(n))=while(!issquarefree(p++),); p \\ Charles R Greathouse IV, Aug 16 2017
Formula
a(n) = prime(n) + A240474(n). - Gus Wiseman, Dec 07 2024
Extensions
More terms from Ryan Propper and Emeric Deutsch, Oct 10 2005
Comments