cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A378039 a(1)=3; a(n>1) = n-th first difference of A120327(k) = least nonsquarefree number greater than k.

Original entry on oeis.org

3, 0, 0, 4, 0, 0, 0, 1, 3, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 4, 0, 0, 0, 1, 2, 0, 1, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 1, 3, 0, 0, 1, 1, 2, 0, 2, 0, 2, 0, 4, 0, 0, 0, 3, 0, 0, 1, 4, 0, 0, 0, 4, 0, 0, 0, 3, 0, 0, 1, 4, 0, 0, 0, 1, 3, 0, 0, 4, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2024

Keywords

Comments

The union is {0,1,2,3,4}.

Crossrefs

Positions of 0's are A005117.
Positions of 4's are A007675 - 1, except first term.
Positions of 1's are A068781.
Positions of 2's are A073247 - 1.
Positions of 3's are A073248 - 1, except first term.
First-differences of A120327.
For prime-powers we have A377780, first-differences of A000015.
Restriction is A377784 (first-differences of A377783, union A378040).
The opposite is A378036 (differences A378033), for prime-powers A377782.
The opposite for squarefree is A378085, differences of A070321
For squarefree we have A378087, restriction A378037, differences of A112926.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Mathematica
    Differences[Table[NestWhile[#+1&,n,#>1&&SquareFreeQ[#]&],{n,100}]]

A112926 Smallest squarefree integer > the n-th prime.

Original entry on oeis.org

3, 5, 6, 10, 13, 14, 19, 21, 26, 30, 33, 38, 42, 46, 51, 55, 61, 62, 69, 73, 74, 82, 85, 91, 101, 102, 105, 109, 110, 114, 129, 133, 138, 141, 151, 154, 158, 165, 170, 174, 181, 182, 193, 194, 199, 201, 213, 226, 229, 230, 235, 241, 246, 253, 258, 265, 271, 273
Offset: 1

Views

Author

Leroy Quet, Oct 06 2005

Keywords

Examples

			10 is the smallest squarefree number greater than the 4th prime, 7. So a(4) = 10.
From _Gus Wiseman_, Dec 07 2024: (Start)
The first number line below shows the squarefree numbers. The second shows the primes:
--1--2--3-----5--6--7-------10-11----13-14-15----17----19----21-22-23-------26--
=====2==3=====5=====7==========11====13==========17====19==========23===========
(End)
		

Crossrefs

Restriction of A067535, differences A378087.
The unrestricted opposite is A070321, differences A378085.
The opposite is A112925, differences A378038.
Subtracting prime(n) from each term gives A240474, opposite A240473.
For nonsquarefree we have A377783, restriction of A120327.
The nonsquarefree differences are A377784, restriction of A378039.
First differences are A378037.
For perfect power we have A378249, A378617, A378250, A378251.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Maple
    with(numtheory): a:=proc(n) local p,B,j: p:=ithprime(n): B:={}: for j from p+1 to p+20 do if abs(mobius(j))>0 then B:=B union {j} else B:=B fi od: B[1] end: seq(a(m),m=1..75); # Emeric Deutsch, Oct 10 2005
  • Mathematica
    Do[k = Prime[n] + 1; While[ !SquareFreeQ[k], k++ ]; Print[k], {n, 1, 100}] (* Ryan Propper, Oct 10 2005 *)
    With[{k = 120}, Table[SelectFirst[Range[Prime@ n + 1, Prime@ n + k], SquareFreeQ], {n, 58}]] (* Michael De Vlieger, Aug 16 2017 *)
  • PARI
    a(n,p=prime(n))=while(!issquarefree(p++),); p \\ Charles R Greathouse IV, Aug 16 2017

Formula

a(n) = prime(n) + A240474(n). - Gus Wiseman, Dec 07 2024

Extensions

More terms from Ryan Propper and Emeric Deutsch, Oct 10 2005

A061399 Number of nonsquarefree integers between primes prime(n) and prime(n+1).

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 1, 1, 4, 0, 2, 1, 0, 2, 4, 2, 1, 2, 1, 1, 2, 2, 2, 3, 3, 0, 1, 1, 1, 7, 1, 3, 0, 4, 1, 3, 2, 1, 4, 2, 1, 3, 1, 1, 1, 4, 3, 2, 1, 1, 2, 1, 6, 2, 2, 2, 1, 3, 2, 0, 4, 6, 1, 1, 2, 4, 3, 5, 1, 3, 1, 4, 3, 3, 1, 3, 2, 1, 3, 3, 1, 4, 1, 1, 2, 2, 3, 2, 0, 1, 5, 3, 2, 3, 1, 3, 4, 1, 9, 1, 5, 2, 3, 0, 3
Offset: 1

Views

Author

Labos Elemer, Jun 07 2001

Keywords

Examples

			Between 113 and 127 the 7 numbers which are not squarefree are {116,117,120,121,124,125,126}, so a(30)=7.
From _Gus Wiseman_, Dec 07 2024: (Start)
The a(n) nonsquarefree numbers for n = 1..15:
   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
  ----------------------------------------------------------
   .   4   .   8  12  16  18  20  24   .  32  40   .  44  48
               9                  25      36          45  49
                                  27                      50
                                  28                      52
(End)
		

Crossrefs

Zeros are A068361.
First differences of A378086, restriction of A057627 to the primes.
Other classes (instead of nonsquarefree):
- For composite we have A046933, first differences of A065890.
- For squarefree see A061398, A068360, A071403, A373197, A373198, A377431.
- For prime power we have A080101.
- For non prime power we have A368748, see A378616.
- For perfect power we have A377432, zeros A377436.
- For non perfect power we have A377433, A029707.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A120327 gives the least nonsquarefree number >= n.

Programs

A070321 Greatest squarefree number <= n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 7, 7, 10, 11, 11, 13, 14, 15, 15, 17, 17, 19, 19, 21, 22, 23, 23, 23, 26, 26, 26, 29, 30, 31, 31, 33, 34, 35, 35, 37, 38, 39, 39, 41, 42, 43, 43, 43, 46, 47, 47, 47, 47, 51, 51, 53, 53, 55, 55, 57, 58, 59, 59, 61, 62, 62, 62, 65, 66, 67, 67, 69, 70, 71, 71
Offset: 1

Views

Author

Benoit Cloitre, May 11 2002

Keywords

Comments

a(n) = Max( core(k) : k=1,2,3,...,n ) where core(x) is the squarefree part of x (the smallest integer such that x*core(x) is a square).

Examples

			From _Gus Wiseman_, Dec 10 2024: (Start)
The squarefree numbers <= n are the following columns, with maxima a(n):
  1  2  3  3  5  6  7  7  7  10  11  11  13  14  15  15
     1  2  2  3  5  6  6  6  7   10  10  11  13  14  14
        1  1  2  3  5  5  5  6   7   7   10  11  13  13
              1  2  3  3  3  5   6   6   7   10  11  11
                 1  2  2  2  3   5   5   6   7   10  10
                    1  1  1  2   3   3   5   6   7   7
                             1   2   2   3   5   6   6
                                 1   1   2   3   5   5
                                         1   2   3   3
                                             1   2   2
                                                 1   1
(End)
		

Crossrefs

The distinct terms are A005117 (the squarefree numbers).
The opposite version is A067535, differences A378087.
The run-lengths are A076259.
Restriction to the primes is A112925; see A378038, A112926, A378037.
For nonsquarefree we have A378033; see A120327, A378036, A378032, A377783.
First differences are A378085.
Subtracting each term from n gives A378619.
A013929 lists the nonsquarefree numbers, differences A078147.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.

Programs

  • Maple
    A070321 := proc(n)
        local a;
        for a from n by -1 do
            if issqrfree(a) then
                return a;
            end if;
        end do:
    end proc:
    seq(A070321(n),n=1..100) ; # R. J. Mathar, May 25 2023
  • Mathematica
    a[n_] :=For[ k = n, True, k--, If[ SquareFreeQ[k], Return[k]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 27 2013 *)
    gsfn[n_]:=Module[{k=n},While[!SquareFreeQ[k],k--];k]; Array[gsfn,80] (* Harvey P. Dale, Mar 27 2013 *)
  • PARI
    a(n) = while (! issquarefree(n), n--); n; \\ Michel Marcus, Mar 18 2017
    
  • Python
    from itertools import count
    from sympy import factorint
    def A070321(n): return next(m for m in count(n,-1) if max(factorint(m).values(),default=0)<=1) # Chai Wah Wu, Dec 04 2024

Formula

a(n) = n - o(n^(1/5)) by a result of Pandey. - Charles R Greathouse IV, Dec 04 2024
a(n) = A005117(A013928(n+1)). - Ridouane Oudra, Jul 26 2025

Extensions

New description from Reinhard Zumkeller, Oct 03 2002

A068361 Numbers n such that the number of squarefree numbers between prime(n) and prime(n+1) = prime(n+1)-prime(n)-1.

Original entry on oeis.org

1, 3, 10, 13, 26, 33, 60, 89, 104, 113, 116, 142, 148, 201, 209, 212, 234, 265, 268, 288, 313, 320, 332, 343, 353, 384, 398, 408, 477, 484, 498, 542, 545, 551, 577, 581, 601, 625, 636, 671, 719, 723, 726, 745, 794, 805, 815, 862, 864, 884, 944, 964, 995, 1054
Offset: 1

Views

Author

Benoit Cloitre, Feb 28 2002

Keywords

Comments

Also numbers k such that all numbers from prime(k) to prime(k+1) are squarefree. All such primes are twins, so this is a subset of A029707. The other twin primes are A061368. - Gus Wiseman, Dec 11 2024

Crossrefs

A subset of A029707 (lesser index of twin primes).
Prime index of each (prime) term of A061351.
Positions of zeros in A061399.
For perfect power instead of squarefree we have A377436, zeros of A377432.
Positions of zeros in A377784.
The rest of the twin primes are at A378620, indices of A061368.
A000040 lists the primes, differences A001223, (run-lengths A333254, A373821).
A005117 lists the squarefree numbers, differences A076259.
A006562 finds balanced primes.
A013929 lists the nonsquarefree numbers, differences A078147.
A014574 is the intersection of A006093 and A008864.
A038664 locates the first prime gap of size 2n.
A046933 counts composite numbers between primes.
A061398 counts squarefree numbers between primes, zeros A068360.
A120327 gives the least nonsquarefree number >= n.

Programs

  • Mathematica
    Select[Range[100],And@@SquareFreeQ/@Range[Prime[#],Prime[#+1]]&] (* Gus Wiseman, Dec 11 2024 *)
  • PARI
    isok(n) = for (k=prime(n)+1, prime(n+1)-1, if (!issquarefree(k), return (0))); 1; \\ Michel Marcus, Apr 29 2016

Formula

n such that A061398(n) = prime(n+1)-prime(n)-1.
prime(a(n)) = A061351(n). - Gus Wiseman, Dec 11 2024

A378033 Greatest nonsquarefree number <= n, or 1 if there is none (the case n <= 3).

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 4, 8, 9, 9, 9, 12, 12, 12, 12, 16, 16, 18, 18, 20, 20, 20, 20, 24, 25, 25, 27, 28, 28, 28, 28, 32, 32, 32, 32, 36, 36, 36, 36, 40, 40, 40, 40, 44, 45, 45, 45, 48, 49, 50, 50, 52, 52, 54, 54, 56, 56, 56, 56, 60, 60, 60, 63, 64, 64, 64, 64, 68
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2024

Keywords

Examples

			The nonsquarefree numbers <= 10 are {4, 8, 9}, so a(10) = 9.
		

Crossrefs

For prime-powers we have A031218, differences A377782.
Greatest of the nonsquarefree numbers counted by A057627.
The opposite for squarefree is A067535, differences A378087.
For squarefree we have A070321, differences A378085.
The opposite is A120327 (union A162966), differences A378039.
The restriction to the primes is A378032, opposite A377783 (union A378040).
First-differences are A378036, restriction A378034.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259, seconds A376590.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes (sums A337030), zeros A068360.
A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361.
A112925 gives the greatest squarefree number < prime(n), differences A378038.
A112926 gives the least squarefree number > prime(n), differences A378037.
A377046 encodes k-differences of nonsquarefree numbers, zeros A377050.

Programs

  • Mathematica
    Table[NestWhile[#-1&,n,#>1&&SquareFreeQ[#]&],{n,100}]
  • PARI
    a(n) = my(k=n); while (issquarefree(k), k--); if(!k, 1, k); \\ Michel Marcus, Jul 26 2025

Formula

a(prime(n)) = A378032(n).
a(n) = A013929(A057627(n)), for n > 3. - Ridouane Oudra, Jul 26 2025

A378032 a(1) = a(2) = 1; a(n>2) is the greatest nonsquarefree number < prime(n).

Original entry on oeis.org

1, 1, 4, 4, 9, 12, 16, 18, 20, 28, 28, 36, 40, 40, 45, 52, 56, 60, 64, 68, 72, 76, 81, 88, 96, 100, 100, 104, 108, 112, 126, 128, 136, 136, 148, 150, 156, 162, 164, 172, 176, 180, 189, 192, 196, 198, 208, 220, 225, 228, 232, 236, 240, 250, 256, 261, 268, 270
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2024

Keywords

Examples

			The terms together with their prime indices begin:
    1: {}
    1: {}
    4: {1,1}
    4: {1,1}
    9: {2,2}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   28: {1,1,4}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   40: {1,1,1,3}
   45: {2,2,3}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
   68: {1,1,7}
   72: {1,1,1,2,2}
		

Crossrefs

Terms appearing twice are A061351 + 1.
For prime-powers we have A065514 (diffs A377781), opposite A345531 (diffs A377703).
For squarefree we have A112925 (differences A378038).
The opposite for squarefree is A112926 (differences A378037).
The opposite is A377783 (union A378040), restriction of A120327 (differences A378039).
Restriction of A378033, which has differences A378036.
The first-differences are A378034, opposite A377784.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes (sums A337030), zeros A068360.
A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361.
A070321 gives the greatest squarefree number up to n.
A377046 encodes k-differences of nonsquarefree numbers, zeros A377050.

Programs

  • Mathematica
    Table[NestWhile[#-1&,Prime[n],#>1&&SquareFreeQ[#]&],{n,100}]

Formula

a(n) = A378033(prime(n)).

A071403 Which squarefree number is prime? a(n)-th squarefree number equals n-th prime.

Original entry on oeis.org

2, 3, 4, 6, 8, 9, 12, 13, 16, 18, 20, 24, 27, 29, 31, 33, 37, 38, 42, 45, 46, 50, 52, 56, 61, 62, 64, 67, 68, 71, 78, 81, 84, 86, 92, 93, 96, 100, 103, 105, 109, 110, 117, 118, 121, 122, 130, 139, 141, 142, 145, 149, 150, 154, 158, 162, 166, 167, 170, 172, 174, 180
Offset: 1

Views

Author

Labos Elemer, May 24 2002

Keywords

Comments

Also the number of squarefree numbers <= prime(n). - Gus Wiseman, Dec 08 2024

Examples

			a(25)=61 because A005117(61) = prime(25) = 97.
From _Gus Wiseman_, Dec 08 2024: (Start)
The squarefree numbers up to prime(n) begin:
n = 1  2  3  4   5   6   7   8   9  10
    ----------------------------------
    2  3  5  7  11  13  17  19  23  29
    1  2  3  6  10  11  15  17  22  26
       1  2  5   7  10  14  15  21  23
          1  3   6   7  13  14  19  22
             2   5   6  11  13  17  21
             1   3   5  10  11  15  19
                 2   3   7  10  14  17
                 1   2   6   7  13  15
                     1   5   6  11  14
                         3   5  10  13
                         2   3   7  11
                         1   2   6  10
                             1   5   7
                                 3   6
                                 2   5
                                 1   3
                                     2
                                     1
The column-lengths are a(n).
(End)
		

Crossrefs

The strict version is A112929.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147.
A070321 gives the greatest squarefree number up to n.
Other families: A014689, A027883, A378615, A065890.
Squarefree numbers between primes: A061398, A068360, A373197, A373198, A377430, A112925, A112926.
Nonsquarefree numbers: A057627, A378086, A061399, A068361, A120327, A377783, A378032, A378033.

Programs

  • Mathematica
    Position[Select[Range[300], SquareFreeQ], ?PrimeQ][[All, 1]] (* _Michael De Vlieger, Aug 17 2023 *)
  • PARI
    lista(nn)=sqfs = select(n->issquarefree(n), vector(nn, i, i)); for (i = 1, #sqfs, if (isprime(sqfs[i]), print1(i, ", "));); \\ Michel Marcus, Sep 11 2013
    
  • PARI
    a(n,p=prime(n))=sum(k=1, sqrtint(p), p\k^2*moebius(k)) \\ Charles R Greathouse IV, Sep 13 2013
    
  • PARI
    a(n,p=prime(n))=my(s); forfactored(k=1, sqrtint(p), s+=p\k[1]^2*moebius(k)); s \\ Charles R Greathouse IV, Nov 27 2017
    
  • PARI
    first(n)=my(v=vector(n),pr,k); forsquarefree(m=1,n*logint(n,2)+3, k++; if(m[2][,2]==[1]~, v[pr++]=k; if(pr==n, return(v)))) \\ Charles R Greathouse IV, Jan 08 2018
    
  • Python
    from math import isqrt
    from sympy import prime, mobius
    def A071403(n): return (p:=prime(n))+sum(mobius(k)*(p//k**2) for k in range(2,isqrt(p)+1)) # Chai Wah Wu, Jul 20 2024

Formula

A005117(a(n)) = A000040(n) = prime(n).
a(n) ~ (6/Pi^2) * n log n. - Charles R Greathouse IV, Nov 27 2017
a(n) = A013928(A008864(n)). - Ridouane Oudra, Oct 15 2019
From Gus Wiseman, Dec 08 2024: (Start)
a(n) = A112929(n) + 1.
a(n+1) - a(n) = A373198(n) = A061398(n) - 1.
(End)

A377783 Least nonsquarefree number > prime(n).

Original entry on oeis.org

4, 4, 8, 8, 12, 16, 18, 20, 24, 32, 32, 40, 44, 44, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 104, 104, 108, 112, 116, 128, 132, 140, 140, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272
Offset: 1

Views

Author

Gus Wiseman, Nov 16 2024

Keywords

Comments

No term appears more than twice. Proof: This would require at least 4 consecutive squarefree numbers (3 primes and at least 1 squarefree number between them). But we cannot have more than 3 consecutive squarefree numbers, because otherwise one of them must be divisible by 4, hence not squarefree.

Examples

			The third prime is 5, which is followed by 6, 7, 8, 9, ..., of which 8 is the first nonsquarefree term, so a(3) = 8.
The terms together with their prime indices begin:
    4: {1,1}
    4: {1,1}
    8: {1,1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   32: {1,1,1,1,1}
   32: {1,1,1,1,1}
   40: {1,1,1,3}
   44: {1,1,5}
   44: {1,1,5}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   68: {1,1,7}
   72: {1,1,1,2,2}
		

Crossrefs

For squarefree we have A112926 (diffs A378037), opposite A112925 (diffs A378038).
Restriction to the primes of A120327, which has first differences A378039.
For prime-power instead of nonsquarefree (and primes + 1) we have A345531.
First differences are A377784.
The opposite is A378032 (diffs A378034), restriction of A378033 (diffs A378036).
The union is A378040.
Terms appearing only once are A378082.
Terms appearing twice are A378083.
Nonsquarefree numbers that are missing are A378084.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A070321 gives the greatest squarefree number up to n.

Programs

  • Mathematica
    Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}]

Formula

a(n) = A120327(prime(n)).

Extensions

Proof suggested by Amiram Eldar.

A378036 First differences of A378033 (greatest positive integer < n that is 1 or nonsquarefree).

Original entry on oeis.org

0, 0, 3, 0, 0, 0, 4, 1, 0, 0, 3, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 4, 1, 0, 0, 3, 1, 1, 0, 2, 0, 2, 0, 2, 0, 0, 0, 4, 0, 0, 3, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 3, 1, 0, 0, 0, 4, 1, 0, 0, 3, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 4, 0, 2, 1, 1, 0, 0, 0, 4, 0, 0, 0, 4
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2024

Keywords

Crossrefs

Positions of 0 are A005117 - 1, complement A013929 - 1.
Sums for squarefree numbers are A070321 (restriction A112925).
The restricted opposite is A377784, differences of A377783 (union A378040).
First-differences of A378033.
The restriction is A378034, differences of A378032.
The restricted opposite for squarefree is A378037, differences of A112926.
The opposite is A378039, differences of A120327 (union A162966).
For squarefree numbers we have A378085, restriction A378038.
The opposite for squarefree is A378087, differences of A067535.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259, seconds A376590.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes (sums A337030), zeros A068360.
A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361.
A377046 encodes k-differences of nonsquarefree numbers, zeros A377050.

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,n,#>1&&SquareFreeQ[#]&],{n,100}]]
  • PARI
    A378033(n) = if(n<=3, 1, forstep(k=n, 0, -1, if(!issquarefree(k), return(k))));
    A378036(n) = (A378033(1+n)-A378033(n)); \\ Antti Karttunen, Jan 28 2025

Formula

a(prime(n)) = A378034(n).

Extensions

Data section extended to a(107) by Antti Karttunen, Jan 28 2025
Showing 1-10 of 39 results. Next