cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 125 results. Next

A182851 Numbers k such that A182850(k) is odd.

Original entry on oeis.org

3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 60, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 100, 101, 102, 103, 105, 106
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

Lexicographically earliest monotonic sequence of positive integers with the property that k appears iff A181819(k) doesn't.

Crossrefs

Complement of A182852. Cf. A080218, A182859.

A182852 Numbers k such that A182850(k) is even.

Original entry on oeis.org

1, 2, 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 40, 44, 45, 48, 49, 50, 52, 54, 56, 63, 64, 68, 72, 75, 76, 80, 81, 88, 92, 96, 98, 99, 104, 108, 112, 116, 117, 121, 124, 125, 128, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 169, 171, 172, 175, 176, 184, 188, 189
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Crossrefs

Complement of A182851. Cf. A080218, A182859.

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A181821 a(n) = smallest integer with factorization as Product p(i)^e(i) such that Product p(e(i)) = n.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 30, 36, 24, 32, 60, 64, 48, 72, 210, 128, 180, 256, 120, 144, 96, 512, 420, 216, 192, 900, 240, 1024, 360, 2048, 2310, 288, 384, 432, 1260, 4096, 768, 576, 840, 8192, 720, 16384, 480, 1800, 1536, 32768, 4620, 1296, 1080, 1152, 960, 65536
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

A permutation of A025487. a(n) is the member m of A025487 such that A181819(m) = n. a(n) is also the member of A025487 whose prime signature is conjugate to the prime signature of A108951(n).
If n = Product_i prime(e(i)) with the e(i) weakly decreasing, then a(n) = Product_i prime(i)^e(i). For example, 90 = prime(3) * prime(2) * prime(2) * prime(1), so a(90) = prime(1)^3 * prime(2)^2 * prime(3)^2 * prime(4)^1 = 12600. - Gus Wiseman, Jan 02 2019

Examples

			The canonical factorization of 24 is 2^3*3^1. Therefore, p(e(i)) = prime(3)*prime(1)(i.e., A000040(3)*A000040(1)), which equals 5*2 = 10. Since 24 is the smallest integer for which p(e(i)) = 10, a(10) = 24.
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> mul(ithprime(i)^l[i], i=1..nops(l)))(sort(map(i->
                 numtheory[pi](i[1])$i[2], ifactors(n)[2]), `>`)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Sep 05 2018
  • Mathematica
    With[{s = Array[If[# == 1, 1, Times @@ Map[Prime@ Last@ # &, FactorInteger@ #]] &, 2^16]}, Array[First@ FirstPosition[s, #] &, LengthWhile[Differences@ Union@ s, # == 1 &]]] (* Michael De Vlieger, Dec 17 2018 *)
    Table[Times@@MapIndexed[Prime[#2[[1]]]^#1&,Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]],{n,30}] (* Gus Wiseman, Jan 02 2019 *)
  • PARI
    A181821(n) = { my(f=factor(n),p=0,m=1); forstep(i=#f~,1,-1,while(f[i,2], f[i,2]--; m *= (p=nextprime(p+1))^primepi(f[i,1]))); (m); }; \\ Antti Karttunen, Dec 10 2018
    
  • Python
    from math import prod
    from sympy import prime, primepi, factorint
    def A181821(n): return prod(prime(i)**e for i, e in enumerate(sorted(map(primepi,factorint(n,multiple=True)),reverse=True),1)) # Chai Wah Wu, Sep 15 2023

Formula

If A108951(n) = Product p(i)^e(i), then a(n) = Product A002110(e(i)). I.e., a(n) = A108951(A181819(A108951(n))).
a(A181819(n)) = A046523(n). - [See also A124859]. Antti Karttunen, Dec 10 2018
a(n) = A025487(A361808(n)). - Pontus von Brömssen, Mar 25 2023
a(n) = A108951(A122111(n)). - Antti Karttunen, Sep 15 2023

Extensions

Definition corrected by Gus Wiseman, Jan 02 2019

A351294 Numbers whose multiset of prime factors has at least one permutation with all distinct run-lengths.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2022

Keywords

Comments

First differs from A130091 (Wilf partitions) in having 216.
See A239455 for the definition of Look-and-Say partitions.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      1: ()            20: (3,1,1)         47: (15)
      2: (1)           23: (9)             48: (2,1,1,1,1)
      3: (2)           24: (2,1,1,1)       49: (4,4)
      4: (1,1)         25: (3,3)           50: (3,3,1)
      5: (3)           27: (2,2,2)         52: (6,1,1)
      7: (4)           28: (4,1,1)         53: (16)
      8: (1,1,1)       29: (10)            54: (2,2,2,1)
      9: (2,2)         31: (11)            56: (4,1,1,1)
     11: (5)           32: (1,1,1,1,1)     59: (17)
     12: (2,1,1)       37: (12)            61: (18)
     13: (6)           40: (3,1,1,1)       63: (4,2,2)
     16: (1,1,1,1)     41: (13)            64: (1,1,1,1,1,1)
     17: (7)           43: (14)            67: (19)
     18: (2,2,1)       44: (5,1,1)         68: (7,1,1)
     19: (8)           45: (3,2,2)         71: (20)
For example, the prime indices of 216 are {1,1,1,2,2,2}, and there are four permutations with distinct run-lengths: (1,1,2,2,2,1), (1,2,2,2,1,1), (2,1,1,1,2,2), (2,2,1,1,1,2); so 216 is in the sequence. It is the Heinz number of the Look-and-Say partition of (3,3,2,1).
		

Crossrefs

The Wilf case (distinct multiplicities) is A130091, counted by A098859.
The complement of the Wilf case is A130092, counted by A336866.
These partitions appear to be counted by A239455.
A variant for runs is A351201, counted by A351203 (complement A351204).
The complement is A351295, counted by A351293.
A032020 = number of binary expansions with distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A056239 = sum of prime indices, row sums of A112798.
A165413 = number of run-lengths in binary expansion, for all runs A297770.
A181819 = Heinz number of prime signature (prime shadow).
A182850/A323014 = frequency depth, counted by A225485/A325280.
A320922 ranks graphical partitions, complement A339618, counted by A000569.
A329739 = compositions with all distinct run-lengths, for all runs A351013.
A333489 ranks anti-runs, complement A348612.
A351017 = binary words with all distinct run-lengths, for all runs A351016.
A351292 = patterns with all distinct run-lengths, for all runs A351200.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],UnsameQ@@Length/@Split[#]&]!={}&]

Extensions

Name edited by Gus Wiseman, Aug 13 2025

A351295 Numbers whose multiset of prime factors has no permutation with all distinct run-lengths.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 120, 122, 123, 126, 129, 130, 132, 133, 134, 138, 140
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2022

Keywords

Comments

First differs from A130092 (non-Wilf partitions) in lacking 216.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
      6: (2,1)         46: (9,1)         84: (4,2,1,1)
     10: (3,1)         51: (7,2)         85: (7,3)
     14: (4,1)         55: (5,3)         86: (14,1)
     15: (3,2)         57: (8,2)         87: (10,2)
     21: (4,2)         58: (10,1)        90: (3,2,2,1)
     22: (5,1)         60: (3,2,1,1)     91: (6,4)
     26: (6,1)         62: (11,1)        93: (11,2)
     30: (3,2,1)       65: (6,3)         94: (15,1)
     33: (5,2)         66: (5,2,1)       95: (8,3)
     34: (7,1)         69: (9,2)        100: (3,3,1,1)
     35: (4,3)         70: (4,3,1)      102: (7,2,1)
     36: (2,2,1,1)     74: (12,1)       105: (4,3,2)
     38: (8,1)         77: (5,4)        106: (16,1)
     39: (6,2)         78: (6,2,1)      110: (5,3,1)
     42: (4,2,1)       82: (13,1)       111: (12,2)
For example, the prime indices of 150 are {1,2,3,3}, with permutations and run-lengths (right):
  (3,3,2,1) -> (2,1,1)
  (3,3,1,2) -> (2,1,1)
  (3,2,3,1) -> (1,1,1,1)
  (3,2,1,3) -> (1,1,1,1)
  (3,1,3,2) -> (1,1,1,1)
  (3,1,2,3) -> (1,1,1,1)
  (2,3,3,1) -> (1,2,1)
  (2,3,1,3) -> (1,1,1,1)
  (2,1,3,3) -> (1,1,2)
  (1,3,3,2) -> (1,2,1)
  (1,3,2,3) -> (1,1,1,1)
  (1,2,3,3) -> (1,1,2)
Since none have all distinct run-lengths, 150 is in the sequence.
		

Crossrefs

Wilf partitions are counted by A098859, ranked by A130091.
Non-Wilf partitions are counted by A336866, ranked by A130092.
A variant for runs is A351201, counted by A351203 (complement A351204).
These partitions appear to be counted by A351293.
The complement is A351294, apparently counted by A239455.
A032020 = number of binary expansions with distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A056239 = sum of prime indices, row sums of A112798.
A165413 = number of distinct run-lengths in binary expansion.
A181819 = Heinz number of prime signature (prime shadow).
A182850/A323014 = frequency depth, counted by A225485/A325280.
A297770 = number of distinct runs in binary expansion.
A320922 ranks graphical partitions, complement A339618, counted by A000569.
A329739 = compositions with all distinct run-lengths, for all runs A351013.
A329747 = runs-resistance, counted by A329746.
A333489 ranks anti-runs, complement A348612.
A351017 = binary words with all distinct run-lengths, for all runs A351016.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],UnsameQ@@Length/@Split[#]&]=={}&]

Extensions

Name edited by Gus Wiseman, Aug 13 2025

A323014 a(1) = 0; a(prime) = 1; otherwise a(n) = 1 + a(A181819(n)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 2, 3, 3, 3, 3, 1, 3, 3, 4, 1, 3, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 5, 1, 3, 4, 2, 3, 3, 1, 4, 3, 3, 1, 4, 1, 3, 4, 4, 3, 3, 1, 4, 2, 3, 1, 5, 3, 3, 3, 4, 1, 5, 3, 4, 3, 3, 3, 4, 1, 4, 4, 3, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2019

Keywords

Comments

Except for n = 2, same as A182850. Unlike A182850, the terms of this sequence depend only on the prime signature (A101296, A118914) of the index.

Crossrefs

Positions of 1's are the prime numbers A000040.
Positions of 2's are the proper prime powers A246547.
Positions of 3's are A182853.
Row lengths of A323023.

Programs

  • Mathematica
    dep[n_]:=If[n==1,0,If[PrimeQ[n],1,1+dep[Times@@Prime/@Last/@FactorInteger[n]]]];
    Array[dep,100]
  • PARI
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A323014(n) = if(1==n,0,if(isprime(n),1, 1+A323014(A181819(n)))); \\ Antti Karttunen, Jun 10 2022

Formula

For all n >= 1, a(n) = a(A046523(n)). [See comment] - Antti Karttunen, Jun 10 2022

Extensions

Terms a(88) and beyond from Antti Karttunen, Jun 10 2022

A304818 If n = Product_i p(y_i) where p(i) is the i-th prime number and y_i <= y_j for i < j, then a(n) = Sum_i y_i*i.

Original entry on oeis.org

0, 1, 2, 3, 3, 5, 4, 6, 6, 7, 5, 9, 6, 9, 8, 10, 7, 11, 8, 12, 10, 11, 9, 14, 9, 13, 12, 15, 10, 14, 11, 15, 12, 15, 11, 17, 12, 17, 14, 18, 13, 17, 14, 18, 15, 19, 15, 20, 12, 16, 16, 21, 16, 19, 13, 22, 18, 21, 17, 21, 18, 23, 18, 21, 15, 20, 19, 24, 20, 19
Offset: 1

Views

Author

Gus Wiseman, May 18 2018

Keywords

Comments

If n > 1 is not a prime number, we have a(n) >= A056239(n) >= Omega(n) >= omega(n) >= A071625(n) >= ... >= Omicron(n) >= omicron(n) > 1, where Omega = A001222, omega = A001221, Omicron = A304687 and omicron = A304465.

Examples

			The multiset of prime indices (see A112798) of 216 is {1,1,1,2,2,2}, which becomes {1,2,3,4,4,5,5,6,6} under A304660, so a(216) = 1+2+3+4+4+5+5+6+6 = 36.
		

Crossrefs

Programs

  • Maple
    a:= n-> (l-> add(i*numtheory[pi](l[i]), i=1..nops(l)))(
                 sort(map(i-> i[1]$i[2], ifactors(n)[2]))):
    seq(a(n), n=1..100);  # Alois P. Heinz, May 20 2018
  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[With[{y=primeMS[n]},Sum[y[[i]]*i,{i,Length[y]}]],{n,20}]
  • PARI
    a(n) = {my(f = factor(n), s = 0, i = 0); for (k=1, #f~, for (kk = 1, f[k, 2], i++; s += i*primepi(f[k,1]););); s;} \\ Michel Marcus, May 19 2018
    
  • PARI
    vf(n) = {my(f=factor(n), nb = bigomega(n), g = vector(nb), i = 0); for (k=1, #f~, for (kk = 1, f[k, 2], i++; g[i] = primepi(f[k,1]););); return(g);} \\ A112798
    a(n) = {my(g = vf(n)); sum(k=1, #g, k*g[k]);} \\ Michel Marcus, May 19 2018

Formula

a(n) = A056239(A304660(n)).

A353832 Heinz number of the multiset of run-sums of the prime indices of n.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 11, 9, 13, 14, 15, 7, 17, 14, 19, 15, 21, 22, 23, 15, 13, 26, 13, 21, 29, 30, 31, 11, 33, 34, 35, 21, 37, 38, 39, 25, 41, 42, 43, 33, 35, 46, 47, 21, 19, 26, 51, 39, 53, 26, 55, 35, 57, 58, 59, 45, 61, 62, 49, 13, 65, 66, 67, 51, 69, 70, 71, 35, 73, 74, 39, 57, 77, 78, 79, 35, 19
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
This sequence represents the transformation f(P) described by Kimberling at A237685.

Examples

			The prime indices of 1260 are {1,1,2,2,3,4}, with run-sums (2,4,3,4), and the multiset {2,3,4,4} has Heinz number 735, so a(1260) = 735.
		

Crossrefs

The number of distinct prime factors of a(n) is A353835, weak A353861.
The version for compositions is A353847, listed A353932.
The greatest prime factor of a(n) has index A353862, least A353931.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A300273 ranks collapsible partitions, counted by A275870.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.
A353851 counts compositions w/ all equal run-sums, ranked by A353848.
A353864 counts rucksack partitions, ranked by A353866.
A353865 counts perfect rucksack partitions, ranked by A353867.
Cf. A005811, A047966, A071625, A073093, A181819, A182850, A182857, A304660, A323014, A353834, A353839, A353841 (1 + iterations needed to reach a squarefree number).

Programs

  • Mathematica
    Table[Times@@Prime/@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k],{n,100}]
  • PARI
    pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
    A353832(n) = if(1==n,n,my(pruns = pis_to_runs(n), m=1, runsum=pruns[1]); for(i=2,#pruns,if(pruns[i] == pruns[i-1], runsum += pruns[i], m *= prime(runsum); runsum = pruns[i])); (m*prime(runsum))); \\ Antti Karttunen, Jan 20 2025

Formula

A001222(a(n)) = A001221(n).
A001221(a(n)) = A353835(n).
A061395(a(n)) = A353862(n).

Extensions

More terms from Antti Karttunen, Jan 20 2025

A323023 Irregular triangle read by rows where row n is the omega-sequence of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 1, 2, 1, 2, 2, 1, 1, 3, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 4, 1, 1, 3, 2, 2, 1, 1, 3, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 2, 2, 1, 3, 1, 3, 2, 2, 1, 1, 3, 3, 1, 1, 5, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 4, 2, 1, 1, 2, 2, 1, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jan 02 2019

Keywords

Comments

We define the omega-sequence of n to have length A323014(n), and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of A181819.
Except for n = 1, all rows end with 1. If n is not prime, the term in row n prior to the last is A304465(n).

Examples

			The sequence of omega-sequences begins:
   1:            26: 2 2 1      51: 2 2 1        76: 3 2 2 1
   2: 1          27: 3 1        52: 3 2 2 1      77: 2 2 1
   3: 1          28: 3 2 2 1    53: 1            78: 3 3 1
   4: 2 1        29: 1          54: 4 2 2 1      79: 1
   5: 1          30: 3 3 1      55: 2 2 1        80: 5 2 2 1
   6: 2 2 1      31: 1          56: 4 2 2 1      81: 4 1
   7: 1          32: 5 1        57: 2 2 1        82: 2 2 1
   8: 3 1        33: 2 2 1      58: 2 2 1        83: 1
   9: 2 1        34: 2 2 1      59: 1            84: 4 3 2 2 1
  10: 2 2 1      35: 2 2 1      60: 4 3 2 2 1    85: 2 2 1
  11: 1          36: 4 2 1      61: 1            86: 2 2 1
  12: 3 2 2 1    37: 1          62: 2 2 1        87: 2 2 1
  13: 1          38: 2 2 1      63: 3 2 2 1      88: 4 2 2 1
  14: 2 2 1      39: 2 2 1      64: 6 1          89: 1
  15: 2 2 1      40: 4 2 2 1    65: 2 2 1        90: 4 3 2 2 1
  16: 4 1        41: 1          66: 3 3 1        91: 2 2 1
  17: 1          42: 3 3 1      67: 1            92: 3 2 2 1
  18: 3 2 2 1    43: 1          68: 3 2 2 1      93: 2 2 1
  19: 1          44: 3 2 2 1    69: 2 2 1        94: 2 2 1
  20: 3 2 2 1    45: 3 2 2 1    70: 3 3 1        95: 2 2 1
  21: 2 2 1      46: 2 2 1      71: 1            96: 6 2 2 1
  22: 2 2 1      47: 1          72: 5 2 2 1      97: 1
  23: 1          48: 5 2 2 1    73: 1            98: 3 2 2 1
  24: 4 2 2 1    49: 2 1        74: 2 2 1        99: 3 2 2 1
  25: 2 1        50: 3 2 2 1    75: 3 2 2 1     100: 4 2 1
		

Crossrefs

Row lengths are A323014, or A182850 if we assume A182850(2) = 1.
First column is empty if n = 1 and otherwise A001222(n).
Second column is empty if n is 1 or prime and otherwise A001221(n).
Third column is empty if n is 1, prime, or a power of a prime and otherwise A071625(n).

Programs

  • Mathematica
    red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]];
    omg[n_,k_]:=If[k==1,PrimeOmega[n],omg[red[n],k-1]];
    dep[n_]:=If[n==1,0,If[PrimeQ[n],1,1+dep[Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]]]]];
    Table[omg[n,k],{n,100},{k,dep[n]}]
Showing 1-10 of 125 results. Next