A239455
Number of Look-and-Say partitions of n; see Comments.
Original entry on oeis.org
0, 1, 2, 2, 4, 5, 7, 10, 13, 16, 21, 28, 33, 45, 55, 65, 83, 105, 121, 155, 180, 217, 259, 318, 362, 445, 512, 614, 707, 850, 958, 1155, 1309, 1543, 1754, 2079, 2327, 2740, 3085, 3592, 4042, 4699, 5253, 6093, 6815, 7839, 8751, 10069, 11208, 12832, 14266, 16270
Offset: 0
The 11 partitions of 6 generate 7 Look-and-Say partitions as follows:
6 -> 111111
51 -> 111111
42 -> 111111
411 -> 21111
33 -> 222
321 -> 111111
3111 -> 3111
222 -> 33
2211 -> 222
21111 -> 411
111111 -> 6,
so that a(6) counts these 7 partitions: 111111, 21111, 222, 3111, 33, 411, 6.
These include all Wilf partitions, counted by
A098859, ranked by
A130091.
These partitions are listed by
A239454 in graded reverse-lex order.
The non-Wilf case is counted by
A351592.
A181819 = Heinz number of the prime signature of n (prime shadow).
A279790 counts disjoint families on strongly normal multisets.
A329738 = compositions with all equal run-lengths.
Counting words with all distinct run-lengths:
Cf.
A000041,
A008284,
A047966,
A182857,
A225485,
A297770,
A304660,
A305563,
A329746,
A351201,
A351202,
A351291.
-
LS[part_List] := Reverse[Sort[Flatten[Map[Table[#[[2]], {#[[1]]}] &, Tally[part]]]]]; LS[n_Integer] := #[[Reverse[Ordering[PadRight[#]]]]] &[DeleteDuplicates[Map[LS, IntegerPartitions[n]]]]; TableForm[t = Map[LS[#] &, Range[10]]](*A239454,array*)
Flatten[t](*A239454,sequence*)
Map[Length[LS[#]] &, Range[25]](*A239455*)
(* Peter J. C. Moses, Mar 18 2014 *)
disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
Table[Length[Select[IntegerPartitions[n],Length[disjointFamilies[#]]>0&]],{n,0,10}] (* Gus Wiseman, Aug 11 2025 *)
A351294
Numbers whose multiset of prime factors has at least one permutation with all distinct run-lengths.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109
Offset: 1
The terms together with their prime indices begin:
1: () 20: (3,1,1) 47: (15)
2: (1) 23: (9) 48: (2,1,1,1,1)
3: (2) 24: (2,1,1,1) 49: (4,4)
4: (1,1) 25: (3,3) 50: (3,3,1)
5: (3) 27: (2,2,2) 52: (6,1,1)
7: (4) 28: (4,1,1) 53: (16)
8: (1,1,1) 29: (10) 54: (2,2,2,1)
9: (2,2) 31: (11) 56: (4,1,1,1)
11: (5) 32: (1,1,1,1,1) 59: (17)
12: (2,1,1) 37: (12) 61: (18)
13: (6) 40: (3,1,1,1) 63: (4,2,2)
16: (1,1,1,1) 41: (13) 64: (1,1,1,1,1,1)
17: (7) 43: (14) 67: (19)
18: (2,2,1) 44: (5,1,1) 68: (7,1,1)
19: (8) 45: (3,2,2) 71: (20)
For example, the prime indices of 216 are {1,1,1,2,2,2}, and there are four permutations with distinct run-lengths: (1,1,2,2,2,1), (1,2,2,2,1,1), (2,1,1,1,2,2), (2,2,1,1,1,2); so 216 is in the sequence. It is the Heinz number of the Look-and-Say partition of (3,3,2,1).
The Wilf case (distinct multiplicities) is
A130091, counted by
A098859.
These partitions appear to be counted by
A239455.
A032020 = number of binary expansions with distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A165413 = number of run-lengths in binary expansion, for all runs
A297770.
A181819 = Heinz number of prime signature (prime shadow).
A329739 = compositions with all distinct run-lengths, for all runs
A351013.
A351017 = binary words with all distinct run-lengths, for all runs
A351016.
A351292 = patterns with all distinct run-lengths, for all runs
A351200.
Cf.
A000961,
A001221,
A001222,
A047966,
A175413,
A182857,
A304660,
A320924,
A328592,
A329747,
A351202,
A351290,
A351592.
A351293
Number of non-Look-and-Say partitions of n. Number of integer partitions of n such that there is no way to choose a disjoint strict integer partition of each multiplicity.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 21, 28, 44, 56, 80, 111, 148, 192, 264, 335, 447, 575, 743, 937, 1213, 1513, 1924, 2396, 3011, 3715, 4646, 5687, 7040, 8600, 10556, 12804, 15650, 18897, 22930, 27593, 33296, 39884, 47921, 57168, 68360, 81295, 96807, 114685
Offset: 0
The a(3) = 1 through a(9) = 14 partitions:
(21) (31) (32) (42) (43) (53) (54)
(41) (51) (52) (62) (63)
(321) (61) (71) (72)
(2211) (421) (431) (81)
(3211) (521) (432)
(3221) (531)
(3311) (621)
(4211) (3321)
(32111) (4221)
(4311)
(5211)
(32211)
(42111)
(321111)
These are all non-Wilf partitions (counted by
A336866, ranked by
A130092).
These partitions appear to be ranked by
A351295.
Non-Wilf partitions in the complement are counted by
A351592.
A032020 = number of binary expansions with all distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A098859 = Wilf partitions (distinct multiplicities), ranked by
A130091.
A181819 = Heinz number of the prime signature of n (prime shadow).
A329738 = compositions with all equal run-lengths.
A329739 = compositions with all distinct run-lengths, for all runs
A351013.
A351017 = binary words with all distinct run-lengths, for all runs
A351016.
A351292 = patterns with all distinct run-lengths, for all runs
A351200.
Cf.
A000041,
A008284,
A047966,
A182857,
A225485,
A238130,
A297770,
A304660,
A305563,
A329740,
A329746,
A351202,
A351291.
-
disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
Table[Length[Select[IntegerPartitions[n],Length[disjointFamilies[#]]==0&]],{n,0,15}] (* Gus Wiseman, Aug 13 2025 *)
A381432
Heinz numbers of section-sum partitions. Union of A381431.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83
Offset: 1
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
22: {1,5}
23: {9}
25: {3,3}
26: {1,6}
27: {2,2,2}
A122111 represents conjugation in terms of Heinz numbers.
Cf.
A000720,
A003557,
A047966,
A051903,
A066328,
A116861,
A130091,
A212166,
A238745,
A239964,
A317081,
A381437.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
Select[Range[100],MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&]
A381433
Heinz numbers of non section-sum partitions. Complement of A381431.
Original entry on oeis.org
6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 110, 114, 120, 126, 132, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 198, 204, 210, 216, 220, 222, 228, 231, 234, 238, 240, 246, 252, 258
Offset: 1
The terms together with their prime indices begin:
6: {1,2}
12: {1,1,2}
18: {1,2,2}
21: {2,4}
24: {1,1,1,2}
30: {1,2,3}
36: {1,1,2,2}
42: {1,2,4}
48: {1,1,1,1,2}
54: {1,2,2,2}
60: {1,1,2,3}
63: {2,2,4}
66: {1,2,5}
70: {1,3,4}
72: {1,1,1,2,2}
78: {1,2,6}
84: {1,1,2,4}
90: {1,2,2,3}
96: {1,1,1,1,1,2}
102: {1,2,7}
105: {2,3,4}
108: {1,1,2,2,2}
A122111 represents conjugation in terms of Heinz numbers.
Cf.
A000720,
A003557,
A051903,
A066328,
A116861,
A130091,
A181819,
A238745,
A239964,
A317081,
A381437.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
Select[Range[100],!MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&]
A383706
Number of ways to choose disjoint strict integer partitions, one of each prime index of n.
Original entry on oeis.org
1, 1, 1, 0, 2, 1, 2, 0, 0, 1, 3, 0, 4, 1, 1, 0, 5, 0, 6, 0, 2, 2, 8, 0, 2, 2, 0, 0, 10, 1, 12, 0, 2, 3, 2, 0, 15, 3, 2, 0, 18, 1, 22, 0, 0, 5, 27, 0, 2, 0, 3, 0, 32, 0, 3, 0, 4, 5, 38, 0, 46, 7, 0, 0, 4, 1, 54, 0, 5, 1, 64, 0, 76, 8, 0, 0, 3, 1, 89, 0, 0, 10
Offset: 1
The prime indices of 25 are (3,3), for which we have choices ((3),(2,1)) and ((2,1),(3)), so a(25) = 2.
The prime indices of 91 are (4,6), for which we have choices ((4),(6)), ((4),(5,1)), ((4),(3,2,1)), ((3,1),(6)), ((3,1),(4,2)), so a(91) = 5.
The prime indices of 273 are (2,4,6), for which we have choices ((2),(4),(6)), ((2),(4),(5,1)), ((2),(3,1),(6)), so a(273) = 3.
For multiplicities instead of indices we have
A382525.
-
pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Table[Length[pof[prix[n]]],{n,100}]
A381431
Heinz number of the section-sum partition of the prime indices of n.
Original entry on oeis.org
1, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 10, 13, 11, 11, 16, 17, 15, 19, 14, 13, 13, 23, 20, 25, 17, 27, 22, 29, 13, 31, 32, 17, 19, 17, 25, 37, 23, 19, 28, 41, 17, 43, 26, 33, 29, 47, 40, 49, 35, 23, 34, 53, 45, 19, 44, 29, 31, 59, 26, 61, 37, 39, 64, 23, 19, 67, 38
Offset: 1
Prime indices of 180 are (3,2,2,1,1), with section-sum partition (6,3), so a(180) = 65.
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
7: {4}
11: {5}
10: {1,3}
13: {6}
11: {5}
11: {5}
16: {1,1,1,1}
Taking length instead of sum in the definition gives
A238745, conjugate
A181819.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
Cf.
A000720,
A003557,
A005117,
A047966,
A051903,
A066328,
A091602,
A116861,
A130091,
A212166,
A380955.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
Table[Times@@Prime/@egs[prix[n]],{n,100}]
A382525
Number of times n appears in A048767 (rank of Look-and-Say partition of prime indices). Number of ordered set partitions whose block-sums are the prime signature of n.
Original entry on oeis.org
1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 3, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 4, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 1, 0, 0, 0, 0
Offset: 1
The a(27) = 2 partitions with Look-and-Say partition (2,2,2) are: (3,3), (2,2,1,1).
The prime indices of 3456 are {1,1,1,1,1,1,1,2,2,2}, and the partitions with Look-and-Say partition (2,2,2,1,1,1,1,1,1,1) are:
(7,3,3)
(7,2,2,1,1)
(6,3,3,1)
(5,3,3,2)
(4,3,3,2,1)
(4,3,2,2,1,1)
so a(3456) = 6.
Positions of first appearances are
A382775.
A000670 counts ordered set partitions.
A003963 gives product of prime indices.
A122111 represents conjugation in terms of Heinz numbers.
A381436 lists the section-sum partition of prime indices, ranks
A381431.
A381440 lists the Look-and-Say partition of prime indices, ranks
A048767.
Cf.
A003557,
A047966,
A048768,
A050361,
A051903,
A051904,
A066328,
A071178,
A116861,
A130091,
A217605,
A239964.
-
stp[y_]:=Select[Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@y],UnsameQ@@Join@@#&];
Table[Length[stp[Last/@FactorInteger[n]]],{n,100}]
A382857
Number of ways to permute the prime indices of n so that the run-lengths are all equal.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 2, 4, 1, 2, 2, 0, 1, 6, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 1, 0, 2, 0, 2, 2, 1, 6, 1, 2, 1, 1, 2, 6, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 2, 6, 1, 0, 1, 2, 1, 6, 2, 2
Offset: 0
The prime indices of 216 are {1,1,1,2,2,2} and we have permutations:
(1,1,1,2,2,2)
(1,2,1,2,1,2)
(2,1,2,1,2,1)
(2,2,2,1,1,1)
so a(216) = 4.
The prime indices of 25920 are {1,1,1,1,1,1,2,2,2,2,3} and we have permutations:
(1,2,1,2,1,2,1,2,1,3,1)
(1,2,1,2,1,2,1,3,1,2,1)
(1,2,1,2,1,3,1,2,1,2,1)
(1,2,1,3,1,2,1,2,1,2,1)
(1,3,1,2,1,2,1,2,1,2,1)
so a(25920) = 5.
For distinct instead of equal run-lengths we have
A382771.
For run-sums instead of run-lengths we have
A382877, distinct
A382876.
Positions of first appearances are
A382878.
Positions of terms > 1 are
A383089.
A003963 gives product of prime indices.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A164707 lists numbers whose binary expansion has all equal run-lengths, distinct
A328592.
A353744 ranks compositions with equal run-lengths, counted by
A329738.
Cf.
A000720,
A000961,
A001221,
A001222,
A003242,
A008480,
A047966,
A238130,
A238279,
A351201,
A351293,
A351295.
-
Table[Length[Select[Permutations[Join@@ConstantArray@@@FactorInteger[n]], SameQ@@Length/@Split[#]&]],{n,0,100}]
A383708
Number of integer partitions of n such that it is possible to choose a family of pairwise disjoint strict integer partitions, one of each part.
Original entry on oeis.org
1, 1, 2, 2, 3, 5, 5, 7, 8, 13, 14, 18, 22, 27, 36, 41, 50, 61, 73, 86
Offset: 0
For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is counted under a(6).
The a(1) = 1 through a(9) = 8 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(2,1) (3,1) (3,2) (3,3) (4,3) (4,4) (5,4)
(4,1) (4,2) (5,2) (5,3) (6,3)
(5,1) (6,1) (6,2) (7,2)
(3,2,1) (4,2,1) (7,1) (8,1)
(4,3,1) (4,3,2)
(5,2,1) (5,3,1)
(6,2,1)
These partitions have Heinz numbers
A382913.
The number of such families for each Heinz number is
A383706.
A098859 counts partitions with distinct multiplicities, compositions
A242882.
Cf.
A044813,
A047966,
A089259,
A116540,
A091602,
A130091,
A317141,
A351013,
A381441,
A382771,
A383013.
-
pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
Table[Length[Select[IntegerPartitions[n], pof[#]!={}&]],{n,15}]
Showing 1-10 of 97 results.
Comments