cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A182850 a(n) = number of iterations that n requires to reach a fixed point under the x -> A181819(x) map.

Original entry on oeis.org

0, 0, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 2, 4, 1, 3, 1, 2, 3, 3, 3, 3, 1, 3, 3, 4, 1, 3, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 5, 1, 3, 4, 2, 3, 3, 1, 4, 3, 3, 1, 4, 1, 3, 4, 4, 3, 3, 1, 4, 2, 3, 1, 5, 3, 3, 3, 4, 1, 5, 3, 4, 3, 3, 3, 4, 1, 4, 4, 3, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

The fixed points of the x -> A181819(x) map are 1 and 2. Note that the x -> A000005(x) map has the same fixed points, and that A000005(n) = A181819(n) iff n is cubefree (cf. A004709). Under the x -> A181819(x) map, it seems significantly easier to generalize about which kinds of integers take a given number of iterations to reach a fixed point than under the x -> A000005(x) map.
Also the number of steps in the reduction of the multiset of prime factors of n wherein one repeatedly takes the multiset of multiplicities. For example, the a(90) = 5 steps are {2,3,3,5} -> {1,1,2} -> {1,2} -> {1,1} -> {2} -> {1}. - Gus Wiseman, May 13 2018

Examples

			A181819(6) = 4; A181819(4) = 3; A181819(3) = 2; A181819(2) = 2. Therefore, a(6) = 3, a(4) = 2, a(3)= 1, and a(2) = 0.
		

Crossrefs

A182857 gives values of n where a(n) increases to a record.

Programs

  • Haskell
    a182850 n = length $ takeWhile (`notElem` [1,2]) $ iterate a181819 n
    -- Reinhard Zumkeller, Mar 26 2012
    
  • Mathematica
    Table[If[n<=2,0,Length[FixedPointList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]]]]-1],{n,100}] (* Gus Wiseman, May 13 2018 *)
  • Scheme
    ;; With memoization-macro definec.
    (definec (A182850 n) (if (<= n 2) 0 (+ 1 (A182850 (A181819 n))))) ;; Antti Karttunen, Feb 05 2016

Formula

For n > 2, a(n) = a(A181819(n)) + 1.
a(n) = 0 iff n equals 1 or 2.
a(n) = 1 iff n is an odd prime (A000040(n) for n>1).
a(n) = 2 iff n is a composite perfect prime power (A025475(n) for n>1).
a(n) = 3 iff n is a squarefree composite integer or a power of a squarefree composite integer (cf. A182853).
a(n) = 4 iff n's prime signature a) contains at least two distinct numbers, and b) contains no number that occurs less often than any other number (cf. A182854).

A182853 Squarefree composite integers and powers of squarefree composite integers.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 26, 30, 33, 34, 35, 36, 38, 39, 42, 46, 51, 55, 57, 58, 62, 65, 66, 69, 70, 74, 77, 78, 82, 85, 86, 87, 91, 93, 94, 95, 100, 102, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 129, 130, 133, 134, 138, 141, 142, 143, 145, 146, 154, 155, 158, 159, 161
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

Numbers that require exactly three iterations to reach a fixed point under the x -> A181819(x) map. In each case, 2 is the fixed point that is reached. (1 is the other fixed point of the x -> A181819(x) map.) Cf. A182850.
Numbers such that A001221(n) > 1 and A071625(n) = 1.

Crossrefs

Numbers n such that A182850(n) = 3. See also A182854, A182855.
Subsequence of A072774 and A182851.
Cf. A120944.

Programs

  • PARI
    isoka(n) = (omega(n) > 1) && issquarefree(n); \\ A120944
    isok(n) = isoka(n) || (ispower(n,,&k) && isoka(k)); \\ Michel Marcus, Jun 24 2017
    
  • Python
    from math import isqrt
    from sympy import mobius, primepi, integer_nthroot
    def A182853(n):
        def g(x): return int(sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-primepi(x))
        def f(x): return n-2+x+(y:=x.bit_length())-sum(g(integer_nthroot(x,k)[0]) for k in range(1,y))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 19 2024
  • Scheme
    (define A182853 (MATCHING-POS 1 1 (lambda (n) (= 3 (A182850 n))))) ;; After the alternative definition of the sequence given by the original author. Requires also MATCHING-POS macro from my IntSeq-library - Antti Karttunen, Feb 05 2016
    

A182855 Numbers that require exactly five iterations to reach a fixed point under the x -> A181819(x) map.

Original entry on oeis.org

60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 364, 372, 378, 380, 396, 408, 414, 420, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492, 495
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Comments

In each case, 2 is the fixed point that is reached (1 is the other fixed point of the x -> A181819(x) map).
Includes all integers whose prime signature a) contains two or more distinct numbers, and b) contains no number that occurs the same number of times as any other number. The first member of this sequence that does not fit that description is 75675600, whose prime signature is (4,3,2,2,1,1).
A full characterization is: Numbers whose prime signature (1) has not all equal multiplicities but (2) the numbers of distinct parts appearing with each distinct multiplicity are all equal. For example, the prime signature of 2520 is {1,1,2,3}, which satisfies (1) but fails (2), as the numbers of distinct parts appearing with each distinct multiplicity are 1 (with multiplicity 2, the part being 1) and 2 (with multiplicity 1, the parts being 2 and 3). Hence the sequence does not contain 2520. - Gus Wiseman, Jan 02 2019

Examples

			1. 180 requires exactly five iterations under the x -> A181819(x) map to reach a fixed point (namely, 2).  A181819(180) = 18;  A181819(18) = 6; A181819(6) = 4; A181819(4) = 3;  A181819(3) = 2 (and A181819(2) = 2).
2. The prime signature of 180 (2^2*3^2*5) is (2,2,1).
a. Two distinct numbers appear in (2,2,1) (namely, 1 and 2).
b. Neither 1 nor 2 appears in (2,2,1) the same number of times as any other number that appears there.
		

Crossrefs

Numbers n such that A182850(n) = 5. See also A182853, A182854.
Subsequence of A059404 and A182851. Includes A085987 and A179642 as subsequences.

Programs

  • Mathematica
    Select[Range[1000],With[{sig=Sort[Last/@FactorInteger[#]]},And[!SameQ@@Length/@Split[sig],SameQ@@Length/@Union/@GatherBy[sig,Length[Position[sig,#]]&]]]&] (* Gus Wiseman, Jan 02 2019 *)

A182852 Numbers k such that A182850(k) is even.

Original entry on oeis.org

1, 2, 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 40, 44, 45, 48, 49, 50, 52, 54, 56, 63, 64, 68, 72, 75, 76, 80, 81, 88, 92, 96, 98, 99, 104, 108, 112, 116, 117, 121, 124, 125, 128, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 169, 171, 172, 175, 176, 184, 188, 189
Offset: 1

Views

Author

Matthew Vandermast, Jan 04 2011

Keywords

Crossrefs

Complement of A182851. Cf. A080218, A182859.
Showing 1-4 of 4 results.