A330998 Sorted list containing the least number whose inverse prime shadow (A181821) has each possible nonzero number of factorizations into factors > 1.
1, 3, 5, 6, 7, 9, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
Offset: 1
Keywords
Examples
Factorizations of the inverse prime shadows of the initial terms: 4 8 12 16 36 24 60 48 2*2 2*4 2*6 2*8 4*9 3*8 2*30 6*8 2*2*2 3*4 4*4 6*6 4*6 3*20 2*24 2*2*3 2*2*4 2*18 2*12 4*15 3*16 2*2*2*2 3*12 2*2*6 5*12 4*12 2*2*9 2*3*4 6*10 2*3*8 2*3*6 2*2*2*3 2*5*6 2*4*6 3*3*4 3*4*5 3*4*4 2*2*3*3 2*2*15 2*2*12 2*3*10 2*2*2*6 2*2*3*5 2*2*3*4 2*2*2*2*3 The corresponding multiset partitions: {11} {111} {112} {1111} {1122} {1112} {1}{1} {1}{11} {1}{12} {1}{111} {1}{122} {1}{112} {1}{1}{1} {2}{11} {11}{11} {11}{22} {11}{12} {1}{1}{2} {1}{1}{11} {12}{12} {2}{111} {1}{1}{1}{1} {2}{112} {1}{1}{12} {1}{1}{22} {1}{2}{11} {1}{2}{12} {1}{1}{1}{2} {2}{2}{11} {1}{1}{2}{2}
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]]; nds=Table[Length[facs[Times@@Prime/@nrmptn[n]]],{n,50}]; Table[Position[nds,i][[1,1]],{i,First/@Gather[nds]}]
Comments