A109298 Primal codes of finite idempotent functions on positive integers.
1, 2, 9, 18, 125, 250, 1125, 2250, 2401, 4802, 21609, 43218, 161051, 300125, 322102, 600250, 1449459, 2701125, 2898918, 4826809, 5402250, 9653618, 20131375, 40262750, 43441281, 86882562, 181182375, 362364750, 386683451, 410338673, 603351125, 773366902, 820677346
Offset: 1
Keywords
Examples
Writing (prime(i))^j as i:j, we have the following table of examples: Primal Codes of Finite Idempotent Functions on Positive Integers ` ` ` 1 = { } ` ` ` 2 = 1:1 ` ` ` 9 = ` ` 2:2 ` ` `18 = 1:1 2:2 ` ` 125 = ` ` ` ` 3:3 ` ` 250 = 1:1 ` ` 3:3 ` `1125 = ` ` 2:2 3:3 ` `2250 = 1:1 2:2 3:3 ` `2401 = ` ` ` ` ` ` 4:4 ` `4802 = 1:1 ` ` ` ` 4:4 ` 21609 = ` ` 2:2 ` ` 4:4 ` 43218 = 1:1 2:2 ` ` 4:4 `161051 = ` ` ` ` ` ` ` ` 5:5 `300125 = ` ` ` ` 3:3 4:4 `322102 = 1:1 ` ` ` ` ` ` 5:5 `600250 = 1:1 ` ` 3:3 4:4 From _Gus Wiseman_, Mar 09 2019: (Start) The sequence of terms together with their prime indices begins as follows. For example, we have 18: {1,2,2} because 18 = prime(1) * prime(2) * prime(2) has prime signature {1,2} and the distinct prime indices are also {1,2}. 1: {} 2: {1} 9: {2,2} 18: {1,2,2} 125: {3,3,3} 250: {1,3,3,3} 1125: {2,2,3,3,3} 2250: {1,2,2,3,3,3} 2401: {4,4,4,4} 4802: {1,4,4,4,4} 21609: {2,2,4,4,4,4} 43218: {1,2,2,4,4,4,4} 161051: {5,5,5,5,5} 300125: {3,3,3,4,4,4,4} 322102: {1,5,5,5,5,5} 600250: {1,3,3,3,4,4,4,4} (End)
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
- J. Awbrey, Riffs and Rotes
Crossrefs
Programs
-
Mathematica
Select[Range[10000],And@@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]==k]&]
-
PARI
is(n) = my(f = factor(n)); for(i = 1, #f~, if(prime(f[i, 2]) != f[i, 1], return(0))); 1 \\ David A. Corneth, Mar 09 2019
Formula
Sum_{n>=1} 1/a(n) = Product_{n>=1} (1 + 1/prime(n)^n) = 1.6807104966... - Amiram Eldar, Jan 03 2021
Extensions
Offset set to 1, missing terms inserted and more terms added by Alois P. Heinz, Mar 08 2019
Comments