cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A130091 Numbers having in their canonical prime factorization mutually distinct exponents.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116
Offset: 1

Views

Author

Reinhard Zumkeller, May 06 2007

Keywords

Comments

This sequence does not contain any number of the form 36n-6 or 36n+6, as such numbers are divisible by 6 but not by 4 or 9. Consequently, this sequence does not contain 24 consecutive integers. The quest for the greatest number of consecutive integers in this sequence has ties to the ABC conjecture (see the MathOverflow link). - Danny Rorabaugh, Sep 23 2015
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with distinct multiplicities. The enumeration of these partitions by sum is given by A098859. - Gus Wiseman, May 04 2019
Aktaş and Ram Murty (2017) called these terms "special numbers" ("for lack of a better word"). They prove that the number of terms below x is ~ c*x/log(x), where c > 1 is a constant. - Amiram Eldar, Feb 25 2021
Sequence A005940(1+A328592(n)), n >= 1, sorted into ascending order. - Antti Karttunen, Apr 03 2022

Examples

			From _Gus Wiseman_, May 04 2019: (Start)
The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  18: {1,2,2}
  19: {8}
  20: {1,1,3}
  23: {9}
  24: {1,1,1,2}
  25: {3,3}
  27: {2,2,2}
(End)
		

Crossrefs

Programs

  • Maple
    filter:= proc(t) local f;
    f:= map2(op,2,ifactors(t)[2]);
    nops(f) = nops(convert(f,set));
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 30 2015
  • Mathematica
    t[n_] := FactorInteger[n][[All, 2]]; Select[Range[400],  Union[t[#]] == Sort[t[#]] &]  (* Clark Kimberling, Mar 12 2015 *)
  • PARI
    isok(n) = {nbf = omega(n); f = factor(n); for (i = 1, nbf, for (j = i+1, nbf, if (f[i, 2] == f[j, 2], return (0)););); return (1);} \\ Michel Marcus, Aug 18 2013
    
  • PARI
    isA130091(n) = issquarefree(factorback(apply(e->prime(e), (factor(n)[, 2])))); \\ Antti Karttunen, Apr 03 2022

Formula

a(n) < A130092(n) for n<=150, a(n) > A130092(n) for n>150.

A181818 Products of superprimorials (A006939).

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 360, 384, 512, 576, 720, 768, 1024, 1152, 1440, 1536, 1728, 2048, 2304, 2880, 3072, 3456, 4096, 4320, 4608, 5760, 6144, 6912, 8192, 8640, 9216, 11520, 12288, 13824, 16384, 17280, 18432, 20736, 23040, 24576, 27648, 32768
Offset: 1

Views

Author

Matthew Vandermast, Nov 30 2010

Keywords

Comments

Sorted list of positive integers with a factorization Product p(i)^e(i) such that (e(1) - e(2)) >= (e(2) - e(3)) >= ... >= (e(k-1) - e(k)) >= e(k), with k = A001221(n), and p(k) = A006530(n) = A000040(k), i.e., the prime factors p(1) .. p(k) must be consecutive primes from 2 onward. - Comment clarified by Antti Karttunen, Apr 28 2022
Subsequence of A025487. A025487(n) belongs to this sequence iff A181815(n) is a member of A025487.
If prime signatures are considered as partitions, these are the members of A025487 whose prime signature is conjugate to the prime signature of a member of A182863. - Matthew Vandermast, May 20 2012

Examples

			2, 12, and 360 are all superprimorials (i.e., members of A006939). Therefore, 2*2*12*360 = 17280 is included in the sequence.
From _Gus Wiseman_, Aug 12 2020 (Start):
The sequence of factorizations (which are unique) begins:
    1 = empty product
    2 = 2
    4 = 2*2
    8 = 2*2*2
   12 = 12
   16 = 2*2*2*2
   24 = 2*12
   32 = 2*2*2*2*2
   48 = 2*2*12
   64 = 2*2*2*2*2*2
   96 = 2*2*2*12
  128 = 2*2*2*2*2*2*2
  144 = 12*12
  192 = 2*2*2*2*12
  256 = 2*2*2*2*2*2*2*2
(End)
		

Crossrefs

A181817 rearranged in numerical order. Also includes all members of A000079, A001021, A006939, A009968, A009992, A066120, A166475, A167448, A181813, A181814, A181816, A182763.
Subsequence of A025487, A055932, A087980, A130091, A181824.
A001013 is the version for factorials.
A336426 is the complement.
A336496 is the version for superfactorials.
A001055 counts factorizations.
A006939 lists superprimorials or Chernoff numbers.
A317829 counts factorizations of superprimorials.
Cf. A022915, A076954, A304686, A325368, A336419, A336420, A336421, A353518 (characteristic function).

Programs

  • Mathematica
    Select[Range[100],PrimePi[First/@If[#==1,{}, FactorInteger[#]]]==Range[ PrimeNu[#]]&&LessEqual@@Differences[ Append[Last/@FactorInteger[#],0]]&] (* Gus Wiseman, Aug 12 2020 *)
  • PARI
    firstdiffs0forward(vec) = { my(v=vector(#vec)); for(n=1,#v,v[n] = vec[n]-if(#v==n,0,vec[1+n])); (v); };
    A353518(n) = if(1==n,1,my(f=factor(n), len=#f~); if(primepi(f[len,1])!=len, return(0), my(diffs=firstdiffs0forward(f[,2])); for(i=1,#diffs-1,if(diffs[i+1]>diffs[i],return(0))); (1)));
    isA181818(n) = A353518(n); \\ Antti Karttunen, Apr 28 2022

A242031 Numbers n such that prime factorization n = p_1^k_1*p_2^k_2*...*p_r^k_r satisfies k_1 >= k_2 >= ... >= k_r.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
Offset: 1

Views

Author

Jean-François Alcover, Aug 14 2014

Keywords

Comments

Complement sequence begins 18, 50, 54, 75, 90, 98, ... (A071365).

Examples

			12 = 2^2*3^1 is in the sequence, but 18 = 2^1*3^2 is not.
		

Crossrefs

Cf. A071365, A304686 (strictly decreasing).

Programs

  • Maple
    filter:= proc(n)
    local F;
    F:= ifactors(n)[2];
    F:= sort(F,(s,t) -> s[1]>t[1]);
    ListTools:-Sorted(map(t -> t[2],F));
    end:
    select(filter, [$1..100]); # Robert Israel, Aug 18 2014
  • Mathematica
    Select[Range[100], GreaterEqual @@ (FactorInteger[#][[All, 2]]) &]
  • PARI
    s=[]; for(n=1, 10^3, m=factor(n)[,2]; if(vecsort(m,,4)==m, s=concat(s, n))); s \\ Jens Kruse Andersen, Aug 18 2014

A100471 Number of integer partitions of n whose sequence of frequencies is strictly increasing.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 7, 8, 11, 13, 18, 20, 27, 32, 40, 44, 60, 67, 82, 93, 114, 129, 161, 175, 209, 239, 285, 315, 372, 416, 484, 545, 631, 698, 811, 890, 1027, 1146, 1304, 1437, 1631, 1805, 2042, 2252, 2539, 2785, 3143, 3439, 3846, 4226, 4722, 5159
Offset: 0

Views

Author

David S. Newman, Nov 21 2004

Keywords

Examples

			a(4) = 4 because of the 5 unrestricted partitions of 4, only one, 3+1 uses each of its summands just once and 1,1 is not an increasing sequence.
From _Gus Wiseman_, Jan 23 2019: (Start)
The a(1) = 1 through a(8) = 11 integer partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (322)      (44)
                    (211)   (2111)   (222)     (511)      (422)
                    (1111)  (11111)  (411)     (4111)     (611)
                                     (3111)    (22111)    (2222)
                                     (21111)   (31111)    (5111)
                                     (111111)  (211111)   (41111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
(End)
		

Crossrefs

Cf. A000219, A000837 (frequencies are relatively prime), A047966 (frequencies are equal), A098859 (frequencies are distinct), A100881, A100882, A100883, A304686 (Heinz numbers of these partitions).

Programs

  • Haskell
    a100471 n = p 0 (n + 1) 1 n where
       p m m' k x | x == 0    = if m < m' || m == 0 then 1 else 0
                  | x < k     = 0
                  | m == 0    = p 1 m' k (x - k) + p 0 m' (k + 1) x
                  | otherwise = p (m + 1) m' k (x - k) +
                                if m < m' then p 0 m (k + 1) x else 0
    -- Reinhard Zumkeller, Dec 27 2012
  • Maple
    b:= proc(n,i,t) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i=1 then `if`(n>t, 1, 0)
        elif i=0 then 0
        else      b(n, i-1, t)
             +add(b(n-i*j, i-1, j), j=t+1..floor(n/i))
          fi
        end:
    a:= n-> b(n, n, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Feb 21 2011
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = Which[n<0, 0, n==0, 1, i==1, If[n>t, 1, 0], i == 0, 0 , True, b[n, i-1, t] + Sum[b[n-i*j, i-1, j], {j, t+1, Floor[n/i]}]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 16 2015, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],OrderedQ@*Split]],{n,20}] (* Gus Wiseman, Jan 23 2019 *)

Extensions

Corrected and extended by Vladeta Jovovic, Nov 24 2004
Name edited by Gus Wiseman, Jan 23 2019

A087980 Numbers with strictly decreasing prime exponents.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 72, 96, 128, 144, 192, 256, 288, 360, 384, 432, 512, 576, 720, 768, 864, 1024, 1152, 1440, 1536, 1728, 2048, 2160, 2304, 2592, 2880, 3072, 3456, 4096, 4320, 4608, 5184, 5760, 6144, 6912, 8192, 8640, 9216, 10368, 10800
Offset: 1

Views

Author

Rainer Rosenthal, Oct 27 2003

Keywords

Comments

This representation provides a natural ordering between strictly decreasing sequences of natural numbers. Let f and g be such sequences with f(1) > f(2) > ... > f(m) and g(1) > g(2) > ... > g(n). Define f < g iff p^f < p^g, where p^f is short for Product(i=1..m) p_i^f(i) and p^g is defined likewise as Product(i=1..n) p_i^g(i).
Note that "strictly decreasing sequences of natural numbers" is another way to say "partitions into distinct parts".
Also products of primorial numbers p_1#^k_1 * p_2#^k_2 * ... * p_n#^k_n where all k_i > 0.
A124010(a(n),k+1) < A124010(a(n),k), 1 <= k < A001221(a(n)). - Reinhard Zumkeller, Apr 13 2015
Numbers whose prime indices cover an initial interval of positive integers with strictly decreasing multiplicities. Intersection of A055932 and A304686. First differs from A181818 in having 72. - Gus Wiseman, Oct 21 2022

Examples

			The sequence starts with a(1)=1, a(2)=2, a(3)=4 and a(4)=8. The next term is a(5)=12 = 2^2*3^1 = p_1^k_1 * p_2^k_2 with k_1=2 > k_2=1.
		

Crossrefs

The weak (weakly decreasing) version is A025487.
The weak opposite (weakly increasing) version is A133808.
The opposite (strictly increasing) version is A133809.
For strictly decreasing prime signature we have A304686.

Programs

  • Haskell
    import Data.List (isPrefixOf)
    a087980 n = a087980_list !! (n-1)
    a087980_list = 1 : filter f [2..] where
       f x = isPrefixOf ps a000040_list && all (< 0) (zipWith (-) (tail es) es)
             where ps = a027748_row x; es = a124010_row x
    -- Reinhard Zumkeller, Apr 13 2015
    
  • Mathematica
    selQ[k_] := Module[{n = k, e = IntegerExponent[k, 2], t}, n /= 2^e; For[p = 3, True, p = NextPrime[p], t = IntegerExponent[n, p]; If[t == 0, Return[n == 1]]; If[t >= e, Return[False]]; e = t; n /= p^e]];
    Select[Range[12000], selQ] (* Jean-François Alcover, Mar 27 2020, after first PARI program *)
  • PARI
    is(n)=my(e=valuation(n,2),t); n>>=e; forprime(p=3,, t=valuation(n,p); if(t==0, return(n==1)); if(t>=e, return(0)); e=t; n/=p^e) \\ Charles R Greathouse IV, Jun 25 2017
    
  • PARI
    list(lim)=my(v=[],u=powers(2,logint(lim\=1,2)),w,p=2,t); forprime(q=3,, w=List(); for(i=1,#u, t=u[i]; for(e=1,valuation(u[i],p)-1, t*=q; if(t>lim, break); listput(w,t))); v=concat(v,Vec(u)); if(#w==0, break); u=w; p=q); Set(v) \\ Charles R Greathouse IV, Jun 25 2017

Formula

The numbers of the form Product(i=1..n) p_i^k_i where p_i = A000040(i) is the i-th prime and k_1 > k_2 > ... > k_n are positive natural numbers.
Compute x = 2^k_1 * 3^k_2 * 5^k_3 * 7^k_4 * 11^k_5 for k_1 > ... > k_5 allowing k_i = 0 for i > 1 and k_i = k_(i+1) in that case. Discard all x > 174636000 = 2^5*3^4*5^3*7^2*11 and enumerate those below. For more members take higher primes into account.

Extensions

Edited by Franklin T. Adams-Watters, Apr 25 2006
Offset change to 1 by T. D. Noe, May 24 2010

A383100 Numbers whose prime indices have no permutation with all equal run-sums.

Original entry on oeis.org

6, 10, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 38, 39, 42, 44, 45, 46, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 18 are {1,2,2}, with permutations (1,2,2), (2,1,2), (2,2,1), with run sums (1,4), (2,1,2), (4,1) respectively, so 18 is in the sequence.
The terms together with their prime indices begin:
    6: {1,2}
   10: {1,3}
   14: {1,4}
   15: {2,3}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
   26: {1,6}
   28: {1,1,4}
   30: {1,2,3}
   33: {2,5}
   34: {1,7}
   35: {3,4}
   38: {1,8}
   39: {2,6}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   46: {1,9}
   50: {1,3,3}
		

Crossrefs

For distinct instead of equal run-sums we appear to have A381636, counted by A381717.
For run-lengths instead of sums we have A382879, counted by complement of A383013.
These are the positions of 0 in A382877.
For more than one choice we have A383015.
The complement is A383110, counted by A383098.
Partitions of this type are counted by A383096.
For a unique choice we have A383099, counted by A383095.
A056239 adds up prime indices, row sums of A112798.
A304442 counts partitions with equal run-sums, ranks A353833.
A353851 counts compositions with equal run-sums, ranks A353848.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Total/@Split[#]&]]==0&]

A357864 Numbers whose prime indices have strictly decreasing run-sums. Heinz numbers of the partitions counted by A304430.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 24, 25, 27, 29, 31, 32, 37, 41, 43, 45, 47, 48, 49, 53, 59, 61, 64, 67, 71, 73, 79, 80, 81, 83, 89, 96, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 135, 137, 139, 149, 151, 157, 160, 163, 167, 169, 173
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   29: {10}
For example, the prime indices of 24 are {1,1,1,2}, with run-sums (3,2), which are strictly decreasing, so 24 is in the sequence.
		

Crossrefs

Subsequence of A304686.
These partitions are counted by A304430.
These are the indices of rows in A354584 that are strictly decreasing.
The weakly decreasing version is A357861, counted by A304406.
The opposite version is A357862, counted by A304428, complement A357863.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[300],Greater@@Total/@Split[primeMS[#]]&]

A383097 Number of integer partitions of n having more than one permutation with all equal run-sums.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 9, 0, 7, 0, 12, 0, 1, 0, 38, 0, 1, 1, 18, 0, 38, 0, 32, 0, 1, 0, 90, 0, 1, 0, 71, 0, 78, 0, 33, 10, 1, 0, 228, 0, 31, 0, 42, 0, 156, 0, 123, 0, 1, 0, 447, 0, 1, 16, 146, 0, 222, 0, 63, 0, 102, 0, 811, 0, 1, 29, 75, 0, 334, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Examples

			The a(27) = 1 partition is: (9,3,3,3,1,1,1,1,1,1,1,1,1).
The a(4) = 1 through a(16) = 9 partitions (empty columns not shown):
  (211)  (3111)  (422)     (511111)  (633)        (71111111)  (844)
                 (41111)             (6222)                   (82222)
                 (221111)            (33222)                  (442222)
                                     (4221111)                (44221111)
                                     (6111111)                (422221111)
                                     (33111111)               (811111111)
                                     (222111111)              (4411111111)
                                                              (42211111111)
                                                              (222211111111)
		

Crossrefs

These partitions are ranked by A383015, positions of terms > 1 in A382877.
For run-lengths instead of sums we have A383090, ranks A383089, unique A383094.
The complement is A383095 + A383096, ranks A383099 \/ A383100.
For any positive number of permutations we have A383098, ranks A383110.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.
A382876 counts permutations of prime indices with distinct run-sums, zeros A381636.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Select[Permutations[#],SameQ@@Total/@Split[#]&]]>1&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A383099 Numbers whose prime indices have exactly one permutation with all equal run-sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 41, 43, 47, 48, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   37: {12}
   41: {13}
		

Crossrefs

For distinct instead of equal run-sums we have A000961, counted by A000005.
These are the positions of 1 in A382877.
For more than one choice we have A383015.
Partitions of this type are counted by A383095.
For no choices we have A383100, counted by A383096.
For at least one choice we have A383110, counted by A383098, see A383013.
For run-lengths instead of sums we have A383112 = positions of 1 in A382857.
A056239 adds up prime indices, row sums of A112798.
A304442 counts partitions with equal run-sums, ranks A353833.
A353851 counts compositions with equal run-sums, ranks A353848.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Total/@Split[#]&]]==1&]

Formula

The complement is A383015 \/ A383100, for run-lengths A382879 \/ A383089.

A334965 Numbers with strictly increasing prime multiplicities.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 50, 53, 54, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 89, 97, 98, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 147, 149, 151, 157, 162, 163, 167, 169
Offset: 1

Views

Author

Gus Wiseman, May 18 2020

Keywords

Comments

First differs from A329131 in lacking 150.
Also numbers whose unsorted prime signature is strictly increasing.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}            25: {3,3}           64: {1,1,1,1,1,1}
    2: {1}           27: {2,2,2}         67: {19}
    3: {2}           29: {10}            71: {20}
    4: {1,1}         31: {11}            73: {21}
    5: {3}           32: {1,1,1,1,1}     75: {2,3,3}
    7: {4}           37: {12}            79: {22}
    8: {1,1,1}       41: {13}            81: {2,2,2,2}
    9: {2,2}         43: {14}            83: {23}
   11: {5}           47: {15}            89: {24}
   13: {6}           49: {4,4}           97: {25}
   16: {1,1,1,1}     50: {1,3,3}         98: {1,4,4}
   17: {7}           53: {16}           101: {26}
   18: {1,2,2}       54: {1,2,2,2}      103: {27}
   19: {8}           59: {17}           107: {28}
   23: {9}           61: {18}           108: {1,1,2,2,2}
		

Crossrefs

These are the Heinz numbers of the partitions counted by A100471.
Partitions with strictly decreasing run-lengths are A100881.
Partitions with weakly decreasing run-lengths are A100882.
Partitions with weakly increasing run-lengths are A100883.
The weakly decreasing version is A242031.
The weakly increasing version is A304678.
The strictly decreasing version is A304686.
Compositions with strictly increasing or decreasing run-lengths are A333191.

Programs

  • Mathematica
    Select[Range[100],Less@@Last/@FactorInteger[#]&]
Showing 1-10 of 19 results. Next