cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 255 results. Next

A181796 a(n) = number of divisors of n whose canonical prime factorizations contain no repeated positive exponents (cf. A130091).

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 4, 5, 2, 4, 2, 6, 3, 3, 3, 7, 2, 3, 3, 7, 2, 4, 2, 5, 5, 3, 2, 9, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 7, 2, 3, 5, 7, 3, 4, 2, 5, 3, 4, 2, 10, 2, 3, 5, 5, 3, 4, 2, 9, 5, 3, 2, 7, 3, 3, 3, 7, 2, 7, 3, 5, 3, 3, 3, 11, 2, 5, 5, 7, 2, 4, 2, 7, 4
Offset: 1

Views

Author

Matthew Vandermast, Nov 22 2010

Keywords

Comments

The canonical factorization of n into prime powers can be written as Product p(i)^e(i), for example. A host of equivalent notations can also be used (for another example, see Weisstein link). a(n) depends only on prime signature of n (cf. A025487).
a(n) >= A085082(n). (A085082(n) equals the number of members of A025487 that divide A046523(n), and each member of A025487 is divisible by at least one member of A130091 that divides no smaller member of A025487.) a(n) > A085082(n) iff n has in its canonical prime factorization at least two exponents greater than 1.
a(n) = number of such divisors of n that in their prime factorization all exponents are unique. - Antti Karttunen, May 27 2017
First differs from A335549 at a(90) = 7, A335549(90) = 8. First differs from A335516 at a(180) = 9, A335516(180) = 10. - Gus Wiseman, Jun 28 2020

Examples

			12 has a total of six divisors (1, 2, 3, 4, 6 and 12). Of those divisors, the number 1 has no prime factors, hence, no positive exponents at all (and no repeated positive exponents) in its canonical prime factorization. The lists of positive exponents for 2, 3, 4, 6 and 12 are (1), (1), (2), (1,1) and (2,1) respectively (cf. A124010). Of all six divisors, only the number 6 (2^1*3^1) has at least one positive exponent repeated (namely, 1). The other five do not; hence, a(12) = 5.
For n = 90 = 2 * 3^2 * 5, the divisors that satisfy the condition are: 1, 2, 3, 3^2, 5, 2 * 3^2, 3^2 * 5, altogether 7, (but for example 90 itself is not included), thus a(90) = 7.
		

Crossrefs

Diverges from A088873 at n=24 and from A085082 at n=36. a(36) = 7, while A085082(36) = 6.
Partitions with distinct multiplicities are A098859.
Sorted prime signature is A118914.
Unsorted prime signature is A124010.
a(n) is the number of divisors of n in A130091.
Factorizations with distinct multiplicities are A255231.
The largest of the counted divisors is A327498.
Factorizations using the counted divisors are A327523.

Programs

  • Mathematica
    Table[DivisorSum[n, 1 &, Length@ Union@ # == Length@ # &@ FactorInteger[#][[All, -1]] &], {n, 105}] (* Michael De Vlieger, May 28 2017 *)
  • PARI
    no_repeated_exponents(n) = { my(es = factor(n)[, 2]); if(length(Set(es)) == length(es),1,0); }
    A181796(n) = sumdiv(n,d,no_repeated_exponents(d)); \\ Antti Karttunen, May 27 2017
    
  • Python
    from sympy import factorint, divisors
    def ok(n):
        f=factorint(n)
        ex=[f[i] for i in f]
        for i in ex:
            if ex.count(i)>1: return 0
        return 1
    def a(n): return sum([1 for i in divisors(n) if ok(i)]) # Indranil Ghosh, May 27 2017

Formula

a(A000079(n)) = a(A002110(n)) = n+1.
a(A006939(n)) = A000110(n+1).
a(A181555(n)) = A002720(n).

A327498 Maximum divisor of n whose prime multiplicities are distinct (A130091).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 12, 13, 7, 5, 16, 17, 18, 19, 20, 7, 11, 23, 24, 25, 13, 27, 28, 29, 5, 31, 32, 11, 17, 7, 18, 37, 19, 13, 40, 41, 7, 43, 44, 45, 23, 47, 48, 49, 50, 17, 52, 53, 54, 11, 56, 19, 29, 59, 20, 61, 31, 63, 64, 13, 11, 67, 68, 23
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2019

Keywords

Comments

A number's prime multiplicities are also called its (unsorted) prime signature.
Every positive integer appears a finite number of times in the sequence; a prime p occurs 2^(PrimePi(p) - 1) times. - David A. Corneth, Sep 17 2019

Examples

			The divisors of 60 whose prime multiplicities are distinct are {1, 2, 3, 4, 5, 12, 20}, so a(60) = 20, the largest of these divisors.
		

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    Table[Max[Select[Divisors[n],UnsameQ@@Last/@FactorInteger[#]&]],{n,100}]
  • PARI
    a(n) = {my(m = Map(), f = factor(n), res = 1); forstep(i = #f~, 1, -1, forstep(j = f[i, 2], 1, -1, if(!mapisdefined(m, j), mapput(m, j, j); res*=f[i, 1]^j; next(2)))); res} \\ David A. Corneth, Sep 17 2019
    
  • PARI
    A351564(n) = issquarefree(factorback(apply(e->prime(e),(factor(n)[,2]))));
    A327498(n) = fordiv(n,d,if(A351564(n/d), return(n/d))); \\ Antti Karttunen, Apr 02 2022

Formula

a(A130091(n)) = n and a(A130092(n)) < n. - Ivan N. Ianakiev, Sep 17 2019
a(n) = n / A327499(n). - Antti Karttunen, Apr 02 2022

A336424 Number of factorizations of n where each factor belongs to A130091 (numbers with distinct prime multiplicities).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 5, 2, 1, 3, 3, 1, 1, 1, 7, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 9, 2, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 4, 1, 1, 3, 11, 1, 1, 1, 3, 1, 1, 1, 11, 1, 1, 3, 3, 1, 1, 1, 9, 5, 1, 1, 4, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) factorizations for n = 2, 4, 8, 60, 16, 36, 32, 48:
  2  4    8      5*12     16       4*9      32         48
     2*2  2*4    3*20     4*4      3*12     4*8        4*12
          2*2*2  3*4*5    2*8      3*3*4    2*16       3*16
                 2*2*3*5  2*2*4    2*18     2*4*4      3*4*4
                          2*2*2*2  2*2*9    2*2*8      2*24
                                   2*2*3*3  2*2*2*4    2*3*8
                                            2*2*2*2*2  2*2*12
                                                       2*2*3*4
                                                       2*2*2*2*3
		

Crossrefs

A327523 is the case when n is restricted to belong to A130091 also.
A001055 counts factorizations.
A007425 counts divisors of divisors.
A045778 counts strict factorizations.
A074206 counts ordered factorizations.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts nonempty chains of divisors.
A281116 counts factorizations with no common divisor.
A302696 lists numbers whose prime indices are pairwise coprime.
A305149 counts stable factorizations.
A320439 counts factorizations using A289509.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336500 counts divisors of n in A130091 with quotient also in A130091.
A336568 = not a product of two numbers with distinct prime multiplicities.
A336569 counts maximal chains of elements of A130091.
A337256 counts chains of divisors.

Programs

  • Mathematica
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Table[Length[facsusing[Select[Range[2,n],UnsameQ@@Last/@FactorInteger[#]&],n]],{n,100}]

A336571 Number of sets of divisors d|n, 1 < d < n, all belonging to A130091 (numbers with distinct prime multiplicities) and forming a divisibility chain.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 5, 1, 3, 3, 8, 1, 5, 1, 5, 3, 3, 1, 14, 2, 3, 4, 5, 1, 4, 1, 16, 3, 3, 3, 17, 1, 3, 3, 14, 1, 4, 1, 5, 5, 3, 1, 36, 2, 5, 3, 5, 1, 14, 3, 14, 3, 3, 1, 16, 1, 3, 5, 32, 3, 4, 1, 5, 3, 4, 1, 35, 1, 3, 5, 5, 3, 4, 1, 36, 8, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) sets for n = 4, 6, 12, 16, 24, 84, 36:
  {}   {}   {}     {}       {}        {}        {}
  {2}  {2}  {2}    {2}      {2}       {2}       {2}
       {3}  {3}    {4}      {3}       {3}       {3}
            {4}    {8}      {4}       {4}       {4}
            {2,4}  {2,4}    {8}       {7}       {9}
                   {2,8}    {12}      {12}      {12}
                   {4,8}    {2,4}     {28}      {18}
                   {2,4,8}  {2,8}     {2,4}     {2,4}
                            {4,8}     {2,12}    {3,9}
                            {2,12}    {2,28}    {2,12}
                            {3,12}    {3,12}    {2,18}
                            {4,12}    {4,12}    {3,12}
                            {2,4,8}   {4,28}    {3,18}
                            {2,4,12}  {7,28}    {4,12}
                                      {2,4,12}  {9,18}
                                      {2,4,28}  {2,4,12}
                                                {3,9,18}
		

Crossrefs

A336423 is the version for chains containing n.
A336570 is the maximal version.
A000005 counts divisors.
A001055 counts factorizations.
A007425 counts divisors of divisors.
A032741 counts proper divisors.
A045778 counts strict factorizations.
A071625 counts distinct prime multiplicities.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.
A336500 counts divisors of n in A130091 with quotient also in A130091.

Programs

  • Mathematica
    strchns[n_]:=If[n==1,1,Sum[strchns[d],{d,Select[Most[Divisors[n]],UnsameQ@@Last/@FactorInteger[#]&]}]];
    Table[strchns[n],{n,100}]

A336423 Number of strict chains of divisors from n to 1 using terms of A130091 (numbers with distinct prime multiplicities).

Original entry on oeis.org

1, 1, 1, 2, 1, 0, 1, 4, 2, 0, 1, 5, 1, 0, 0, 8, 1, 5, 1, 5, 0, 0, 1, 14, 2, 0, 4, 5, 1, 0, 1, 16, 0, 0, 0, 0, 1, 0, 0, 14, 1, 0, 1, 5, 5, 0, 1, 36, 2, 5, 0, 5, 1, 14, 0, 14, 0, 0, 1, 0, 1, 0, 5, 32, 0, 0, 1, 5, 0, 0, 1, 35, 1, 0, 5, 5, 0, 0, 1, 36, 8, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) chains for n = 4, 8, 12, 16, 24, 32:
  4/1    8/1      12/1      16/1        24/1         32/1
  4/2/1  8/2/1    12/2/1    16/2/1      24/2/1       32/2/1
         8/4/1    12/3/1    16/4/1      24/3/1       32/4/1
         8/4/2/1  12/4/1    16/8/1      24/4/1       32/8/1
                  12/4/2/1  16/4/2/1    24/8/1       32/16/1
                            16/8/2/1    24/12/1      32/4/2/1
                            16/8/4/1    24/4/2/1     32/8/2/1
                            16/8/4/2/1  24/8/2/1     32/8/4/1
                                        24/8/4/1     32/16/2/1
                                        24/12/2/1    32/16/4/1
                                        24/12/3/1    32/16/8/1
                                        24/12/4/1    32/8/4/2/1
                                        24/8/4/2/1   32/16/4/2/1
                                        24/12/4/2/1  32/16/8/2/1
                                                     32/16/8/4/1
                                                     32/16/8/4/2/1
		

Crossrefs

A336569 is the maximal case.
A336571 does not require n itself to have distinct prime multiplicities.
A000005 counts divisors.
A007425 counts divisors of divisors.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts nonempty strict chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.
A336500 counts divisors of n in A130091 with quotient also in A130091.
A337256 counts strict chains of divisors.

Programs

  • Mathematica
    strchns[n_]:=If[n==1,1,If[!UnsameQ@@Last/@FactorInteger[n],0,Sum[strchns[d],{d,Select[Most[Divisors[n]],UnsameQ@@Last/@FactorInteger[#]&]}]]];
    Table[strchns[n],{n,100}]

A336569 Number of maximal strict chains of divisors from n to 1 using elements of A130091 (numbers with distinct prime multiplicities).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 2, 1, 2, 0, 0, 1, 3, 1, 0, 1, 2, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 3, 1, 0, 1, 2, 2, 0, 1, 4, 1, 2, 0, 2, 1, 3, 0, 3, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 2, 0, 0, 1, 5, 1, 0, 2, 2, 0, 0, 1, 4, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) chains for n = 12, 72, 144, 192 (ones not shown):
  12/3    72/18/2       144/72/18/2       192/96/48/24/12/3
  12/4/2  72/18/9/3     144/72/18/9/3     192/64/32/16/8/4/2
          72/24/12/3    144/48/24/12/3    192/96/32/16/8/4/2
          72/24/8/4/2   144/72/24/12/3    192/96/48/16/8/4/2
          72/24/12/4/2  144/48/16/8/4/2   192/96/48/24/8/4/2
                        144/48/24/8/4/2   192/96/48/24/12/4/2
                        144/72/24/8/4/2
                        144/48/24/12/4/2
                        144/72/24/12/4/2
		

Crossrefs

A336423 is the non-maximal version.
A336570 is the version for chains not necessarily containing n.
A000005 counts divisors.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A007425 counts divisors of divisors.
A032741 counts proper divisors.
A045778 counts strict factorizations.
A071625 counts distinct prime multiplicities.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.
A336571 counts divisor sets of elements of A130091.

Programs

  • Mathematica
    strsigQ[n_]:=UnsameQ@@Last/@FactorInteger[n];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    strchs[n_]:=If[n==1,{{}},If[!strsigQ[n],{},Join@@Table[Prepend[#,d]&/@strchs[d],{d,Select[Most[Divisors[n]],strsigQ]}]]];
    Table[Length[fasmax[strchs[n]]],{n,100}]

A327523 Number of factorizations of the n-th number with distinct prime multiplicities A130091(n) into numbers > 1 with distinct prime multiplicities.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 1, 3, 1, 5, 1, 3, 1, 3, 1, 5, 2, 3, 3, 1, 1, 7, 1, 5, 1, 1, 3, 3, 1, 9, 2, 3, 3, 1, 5, 5, 1, 1, 3, 11, 1, 3, 1, 11, 1, 3, 3, 1, 9, 5, 1, 5, 1, 3, 14, 1, 3, 3, 1, 1, 5, 1, 11, 1, 9, 1, 3, 3, 2, 3, 3, 1, 15, 1, 5, 5, 1, 1, 20, 3, 3, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2019

Keywords

Comments

A number's prime multiplicities are also called its (unsorted) prime signature.

Examples

			The a(57) = 14 factorizations of 96 together with the corresponding multiset partitions of {1,1,1,1,1,2}:
  (2*2*2*2*2*3)  {{1}{1}{1}{1}{1}{2}}
  (2*2*2*3*4)    {{1}{1}{1}{2}{11}}
  (2*2*2*12)     {{1}{1}{1}{112}}
  (2*2*3*8)      {{1}{1}{2}{111}}
  (2*2*24)       {{1}{1}{1112}}
  (2*3*4*4)      {{1}{2}{11}{11}}
  (2*3*16)       {{1}{2}{1111}}
  (2*4*12)       {{1}{11}{112}}
  (2*48)         {{1}{11112}}
  (3*4*8)        {{2}{11}{111}}
  (3*32)         {{2}{11111}}
  (4*24)         {{11}{1112}}
  (8*12)         {{111}{112}}
  (96)           {{111112}}
		

Crossrefs

See link for additional cross-references.

Programs

  • Mathematica
    nn=100;
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    y=Select[Range[nn],UnsameQ@@Last/@FactorInteger[#]&];
    Table[Length[facsusing[Rest[y],n]],{n,y}]

A342028 Numbers k such that k and k+1 both have mutually distinct exponents in their prime factorization (A130091).

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 11, 12, 16, 17, 18, 19, 23, 24, 27, 28, 31, 40, 43, 44, 47, 48, 49, 52, 53, 63, 67, 71, 72, 75, 79, 80, 88, 96, 97, 98, 103, 107, 108, 112, 116, 124, 127, 135, 136, 147, 148, 151, 152, 162, 163, 171, 172, 175, 188, 191, 192, 199, 207, 211, 223
Offset: 1

Views

Author

Amiram Eldar, Feb 25 2021

Keywords

Examples

			2 is a term since both 2 and 3 have a single exponent (1) in their prime factorization.
5 is not a term since 6 = 2*3 has two equal exponents (1) in its prime factorization.
		

Crossrefs

Subsequence of A130091.
Subsequences: A342029, A342030, A342031.

Programs

  • Mathematica
    q[n_] := Length[(e = FactorInteger[n][[;; , 2]])] == Length[Union[e]]; Select[Range[250], q[#] && q[# + 1] &]

A336570 Number of maximal sets of proper divisors d|n, d < n, all belonging to A130091 (numbers with distinct prime multiplicities) and forming a divisibility chain.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 4, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 5, 1, 2, 2, 2, 2, 3, 1, 4, 1, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) sets for n = 36, 120, 144, 180 (ones not shown):
  {2,18}    {3,12,24}    {2,18,72}       {2,18}
  {3,12}    {5,20,40}    {3,9,18,72}     {3,12}
  {2,4,12}  {2,4,8,24}   {3,12,24,48}    {5,20}
  {3,9,18}  {2,4,8,40}   {3,12,24,72}    {5,45}
            {2,4,12,24}  {2,4,8,16,48}   {2,4,12}
            {2,4,20,40}  {2,4,8,24,48}   {2,4,20}
                         {2,4,8,24,72}   {3,9,18}
                         {2,4,12,24,48}  {3,9,45}
                         {2,4,12,24,72}
		

Crossrefs

A336569 is the version for chains containing n.
A336571 is the non-maximal version.
A000005 counts divisors.
A001055 counts factorizations.
A007425 counts divisors of divisors.
A032741 counts proper divisors.
A045778 counts strict factorizations.
A071625 counts distinct prime multiplicities.
A074206 counts strict chains of divisors from n to 1.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A336422 counts divisible pairs of divisors, both in A130091.
A336424 counts factorizations using A130091.
A336500 counts divisors of n in A130091 with quotient also in A130091.

Programs

  • Mathematica
    strsigQ[n_]:=UnsameQ@@Last/@FactorInteger[n];
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    strses[n_]:=If[n==1,{{}},Join@@Table[Append[#,d]&/@strses[d],{d,Select[Most[Divisors[n]],strsigQ]}]];
    Table[Length[fasmax[strses[n]]],{n,100}]

A337074 Number of strict chains of divisors in A130091 (numbers with distinct prime multiplicities), starting with n!.

Original entry on oeis.org

1, 1, 2, 0, 28, 0, 768, 0, 0, 0, 42155360, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 16 2020

Keywords

Comments

Support appears to be {0, 1, 2, 4, 6, 10}.

Examples

			The a(4) = 28 chains:
  24  24/1   24/2/1   24/4/2/1   24/8/4/2/1
      24/2   24/3/1   24/8/2/1   24/12/4/2/1
      24/3   24/4/1   24/8/4/1
      24/4   24/4/2   24/8/4/2
      24/8   24/8/1   24/12/2/1
      24/12  24/8/2   24/12/3/1
             24/8/4   24/12/4/1
             24/12/1  24/12/4/2
             24/12/2
             24/12/3
             24/12/4
		

Crossrefs

A336867 is the complement of the support.
A336868 is the characteristic function (image under A057427).
A336942 is half the version for superprimorials (n > 1).
A337071 does not require distinct prime multiplicities.
A337104 is the case of chains ending with 1.
A000005 counts divisors.
A000142 lists factorial numbers.
A027423 counts divisors of factorial numbers.
A067824 counts chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A076716 counts factorizations of factorial numbers.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts chains of divisors.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336414 counts divisors of n! with distinct prime multiplicities.
A336415 counts divisors of n! with equal prime multiplicities.
A336423 counts chains using A130091, with maximal case A336569.
A336571 counts chains of divisors 1 < d < n using A130091.

Programs

  • Mathematica
    chnsc[n_]:=If[!UnsameQ@@Last/@FactorInteger[n],{},If[n==1,{{1}},Prepend[Join@@Table[Prepend[#,n]&/@chnsc[d],{d,Most[Divisors[n]]}],{n}]]];
    Table[Length[chnsc[n!]],{n,0,6}]

Formula

a(n) = 2*A337104(n) = 2*A336423(n!) for n > 1.
Showing 1-10 of 255 results. Next