cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A001156 Number of partitions of n into squares.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 8, 9, 10, 10, 12, 13, 14, 14, 16, 19, 20, 21, 23, 26, 27, 28, 31, 34, 37, 38, 43, 46, 49, 50, 55, 60, 63, 66, 71, 78, 81, 84, 90, 98, 104, 107, 116, 124, 132, 135, 144, 154, 163, 169, 178, 192, 201, 209, 220, 235, 247, 256
Offset: 0

Views

Author

Keywords

Comments

Number of partitions of n such that number of parts equal to k is multiple of k for all k. - Vladeta Jovovic, Aug 01 2004
Of course p_{4*square}(n)>0. In fact p_{4*square}(32n+28)=3 times p_{4*square}(8n+7) and p_{4*square}(72n+69) is even. These seem to be the only arithmetic properties the function p_{4*square(n)} possesses. Similar results hold for partitions into positive squares, distinct squares and distinct positive squares. - Michael David Hirschhorn, May 05 2005
The Heinz numbers of these partitions are given by A324588. - Gus Wiseman, Mar 09 2019

Examples

			p_{4*square}(23)=1 because 23 = 3^2 + 3^2 + 2^2 + 1^2 and there is no other partition of 23 into squares.
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 +...
such that the g.f. A(x) satisfies the identity [_Paul D. Hanna_]:
A(x) = 1/((1-x)*(1-x^4)*(1-x^9)*(1-x^16)*(1-x^25)*...)
A(x) = 1 + x/(1-x) + x^4/((1-x)*(1-x^4)) + x^9/((1-x)*(1-x^4)*(1-x^9)) + x^16/((1-x)*(1-x^4)*(1-x^9)*(1-x^16)) + ...
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(14) = 6 integer partitions into squares are:
  (941)
  (911111)
  (44411)
  (44111111)
  (41111111111)
  (11111111111111)
while the a(14) = 6 integer partitions in which the multiplicity of k is a multiple of k for all k are:
  (333221)
  (33311111)
  (22222211)
  (2222111111)
  (221111111111)
  (11111111111111)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A000161 (partitions into 2 squares), A000290, A033461, A131799, A218494, A285218, A304046.
Cf. A078134 (first differences).
Row sums of A243148.
Euler trans. of A010052 (see also A308297).

Programs

  • Haskell
    a001156 = p (tail a000290_list) where
       p _          0 = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Oct 31 2012, Aug 14 2011
    
  • Magma
    m:=70; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^(k^2)): k in [1..(m+2)]]) )); // G. C. Greubel, Nov 11 2018
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+ `if`(i^2>n, 0, b(n-i^2, i))))
        end:
    a:= n-> b(n, isqrt(n)):
    seq(a(n), n=0..120);  # Alois P. Heinz, May 30 2014
  • Mathematica
    CoefficientList[ Series[Product[1/(1 - x^(m^2)), {m, 70}], {x, 0, 68}], x] (* Or *)
    Join[{1}, Table[Length@PowersRepresentations[n, n, 2], {n, 68}]] (* Robert G. Wilson v, Apr 12 2005, revised Sep 27 2011 *)
    f[n_] := Length@ IntegerPartitions[n, All, Range@ Sqrt@ n^2]; Array[f, 67] (* Robert G. Wilson v, Apr 14 2013 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2>n, 0, b[n-i^2, i]]]]; a[n_] := b[n, Sqrt[n]//Floor]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)
  • PARI
    {a(n)=polcoeff(1/prod(k=1, sqrtint(n+1), 1-x^(k^2)+x*O(x^n)), n)} \\ Paul D. Hanna, Mar 09 2012
    
  • PARI
    {a(n)=polcoeff(1+sum(m=1, sqrtint(n+1), x^(m^2)/prod(k=1, m, 1-x^(k^2)+x*O(x^n))), n)} \\ Paul D. Hanna, Mar 09 2012
    

Formula

G.f.: Product_{m>=1} 1/(1-x^(m^2)).
G.f.: Sum_{n>=0} x^(n^2) / Product_{k=1..n} (1 - x^(k^2)). - Paul D. Hanna, Mar 09 2012
a(n) = (1/n)*Sum_{k=1..n} A035316(k)*a(n-k). - Vladeta Jovovic, Nov 20 2002
a(n) = f(n,1,3) with f(x,y,z) = if xReinhard Zumkeller, Nov 08 2009
Conjecture (Jan Bohman, Carl-Erik Fröberg, Hans Riesel, 1979): a(n) ~ c * n^(-alfa) * exp(beta*n^(1/3)), where c = 1/18.79656, beta = 3.30716, alfa = 1.16022. - Vaclav Kotesovec, Aug 19 2015
From Vaclav Kotesovec, Dec 29 2016: (Start)
Correct values of these constants are:
1/c = sqrt(3) * (4*Pi)^(7/6) / Zeta(3/2)^(2/3) = 17.49638865935104978665...
alfa = 7/6 = 1.16666666666666666...
beta = 3/2 * (Pi/2)^(1/3) * Zeta(3/2)^(2/3) = 3.307411783596651987...
a(n) ~ 3^(-1/2) * (4*Pi*n)^(-7/6) * Zeta(3/2)^(2/3) * exp(2^(-4/3) * 3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3)). [Hardy & Ramanujan, 1917]
(End)

Extensions

More terms from Eric W. Weisstein
More terms from Gh. Niculescu (ghniculescu(AT)yahoo.com), Oct 08 2006

A033461 Number of partitions of n into distinct squares.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 0, 2, 2, 0, 0, 2, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 0, 2, 3, 1, 1, 4, 3, 0, 1, 2, 2, 1, 0, 1, 4, 3, 0, 2, 4, 2, 1, 3, 2, 1, 2, 3, 3, 2, 1, 3, 6, 3, 0, 2, 5, 3, 0, 1, 3, 3, 3, 4
Offset: 0

Views

Author

Keywords

Comments

"WEIGH" transform of squares A000290.
a(n) = 0 for n in {A001422}, a(n) > 0 for n in {A003995}. - Alois P. Heinz, May 14 2014
Number of partitions of n in which each part i has multiplicity i. Example: a(50)=3 because we have [1,2,2,3,3,3,6,6,6,6,6,6], [1,7,7,7,7,7,7,7], and [3,3,3,4,4,4,4,5,5,5,5,5]. - Emeric Deutsch, Jan 26 2016
The Heinz numbers of integer partitions into distinct pairs are given by A324587. - Gus Wiseman, Mar 09 2019
From Gus Wiseman, Mar 09 2019: (Start)
Equivalent to Emeric Deutsch's comment, a(n) is the number of integer partitions of n where the multiplicities (where if x < y the multiplicity of x is counted prior to the multiplicity of y) are equal to the distinct parts in increasing order. The Heinz numbers of these partitions are given by A109298. For example, the first 30 terms count the following integer partitions:
1: (1)
4: (22)
5: (221)
9: (333)
10: (3331)
13: (33322)
14: (333221)
16: (4444)
17: (44441)
20: (444422)
21: (4444221)
25: (55555)
25: (4444333)
26: (555551)
26: (44443331)
29: (5555522)
29: (444433322)
30: (55555221)
30: (4444333221)
The case where the distinct parts are taken in decreasing order is A324572, with Heinz numbers given by A324571.
(End)

Examples

			a(50)=3 because we have [1,4,9,36], [1,49], and [9,16,25]. - _Emeric Deutsch_, Jan 26 2016
From _Gus Wiseman_, Mar 09 2019: (Start)
The first 30 terms count the following integer partitions:
   1: (1)
   4: (4)
   5: (4,1)
   9: (9)
  10: (9,1)
  13: (9,4)
  14: (9,4,1)
  16: (16)
  17: (16,1)
  20: (16,4)
  21: (16,4,1)
  25: (25)
  25: (16,9)
  26: (25,1)
  26: (16,9,1)
  29: (25,4)
  29: (16,9,4)
  30: (25,4,1)
  30: (16,9,4,1)
(End)
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 288-289.

Crossrefs

Cf. A001422, A003995, A078434, A242434 (the same for compositions), A279329.
Row sums of A341040.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i-1))))
        end:
    a:= n-> b(n, isqrt(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, May 14 2014
  • Mathematica
    nn=10; CoefficientList[Series[Product[(1+x^(k*k)), {k,nn}], {x,0,nn*nn}], x] (* T. D. Noe, Jul 24 2006 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2 > n, 0, b[n - i^2, i-1]]]]; a[n_] := b[n, Floor[Sqrt[n]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 21 2015, after Alois P. Heinz *)
    nmax = 20; poly = ConstantArray[0, nmax^2 + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j + 1]] += poly[[j - k^2 + 1]], {j, nmax^2, k^2, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Dec 09 2016 *)
    Table[Length[Select[IntegerPartitions[n],Reverse[Union[#]]==Length/@Split[#]&]],{n,30}] (* Gus Wiseman, Mar 09 2019 *)
  • PARI
    a(n)=polcoeff(prod(k=1,sqrt(n),1+x^k^2), n)
    
  • PARI
    first(n)=Vec(prod(k=1,sqrtint(n),1+'x^k^2,O('x^(n+1))+1)) \\ Charles R Greathouse IV, Sep 03 2015
    
  • Python
    from functools import cache
    from sympy.core.power import isqrt
    @cache
    def b(n,i):
      # Code after Alois P. Heinz
      if n == 0: return 1
      if i == 0: return 0
      i2 = i*i
      return b(n, i-1) + (0 if i2 > n else b(n - i2, i-1))
    a = lambda n: b(n, isqrt(n))
    print([a(n) for n in range(1, 101)]) # Darío Clavijo, Nov 30 2023

Formula

G.f.: Product_{n>=1} ( 1+x^(n^2) ).
a(n) ~ exp(3 * 2^(-5/3) * Pi^(1/3) * ((sqrt(2)-1)*zeta(3/2))^(2/3) * n^(1/3)) * ((sqrt(2)-1)*zeta(3/2))^(1/3) / (2^(4/3) * sqrt(3) * Pi^(1/3) * n^(5/6)), where zeta(3/2) = A078434. - Vaclav Kotesovec, Dec 09 2016
See Murthy, Brack, Bhaduri, Bartel (2018) for a more complete asymptotic expansion. - N. J. A. Sloane, Aug 17 2018

Extensions

More terms from Michael Somos

A048767 If n = Product (p_j^k_j) then a(n) = Product ( prime(k_j)^pi(p_j) ) where pi is A000720.

Original entry on oeis.org

1, 2, 4, 3, 8, 8, 16, 5, 9, 16, 32, 12, 64, 32, 32, 7, 128, 18, 256, 24, 64, 64, 512, 20, 27, 128, 25, 48, 1024, 64, 2048, 11, 128, 256, 128, 27, 4096, 512, 256, 40, 8192, 128, 16384, 96, 72, 1024, 32768, 28, 81, 54, 512, 192, 65536, 50, 256, 80, 1024, 2048
Offset: 1

Views

Author

Keywords

Comments

If the prime power factors p^e of n are replaced by prime(e)^pi(p), then the prime terms q in the sequence pertain to 2^m with m > 1, since pi(2) = 1. - Michael De Vlieger, Apr 25 2017
Also the Heinz number of the integer partition obtained by applying the map described in A217605 (which interchanges the parts with their multiplicities) to the integer partition with Heinz number n, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The image of this map (which is the union of this sequence) is A130091. - Gus Wiseman, May 04 2019

Examples

			For n=6, 6 = (2^1)*(3^1), a(6) = ([first prime]^pi(2))*([first prime]^pi(3)) = (2^1)*(2^2) = 8.
From _Gus Wiseman_, May 04 2019: (Start)
For n = 1..20, the prime indices of n together with the prime indices of a(n) are the following:
   1: {} {}
   2: {1} {1}
   3: {2} {1,1}
   4: {1,1} {2}
   5: {3} {1,1,1}
   6: {1,2} {1,1,1}
   7: {4} {1,1,1,1}
   8: {1,1,1} {3}
   9: {2,2} {2,2}
  10: {1,3} {1,1,1,1}
  11: {5} {1,1,1,1,1}
  12: {1,1,2} {1,1,2}
  13: {6} {1,1,1,1,1,1}
  14: {1,4} {1,1,1,1,1}
  15: {2,3} {1,1,1,1,1}
  16: {1,1,1,1} {4}
  17: {7} {1,1,1,1,1,1,1}
  18: {1,2,2} {1,2,2}
  19: {8} {1,1,1,1,1,1,1,1}
  20: {1,1,3} {1,1,1,2}
(End)
		

Crossrefs

Programs

  • Maple
    A048767 := proc(n)
        local a,p,e,f;
        a := 1 ;
        for f in ifactors(n)[2] do
            p := op(1,f) ;
            e := op(2,f) ;
            a := a*ithprime(e)^numtheory[pi](p) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Nov 08 2012
  • Mathematica
    Table[{p, k} = Transpose@ FactorInteger[n]; Times @@ (Prime[k]^PrimePi[p]), {n, 58}] (* Ivan Neretin, Jun 02 2016 *)
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; e >= 0 :> Prime[e]^PrimePi[p]] &, 65] (* Michael De Vlieger, Apr 25 2017 *)

Extensions

a(1)=1 prepended by Alois P. Heinz, Jul 26 2015

A048768 Numbers n such that A048767(n) = n.

Original entry on oeis.org

1, 2, 9, 12, 18, 40, 112, 125, 250, 352, 360, 675, 832, 1008, 1125, 1350, 1500, 2176, 2250, 2401, 3168, 3969, 4802, 4864, 7488, 7938, 11776, 14000, 19584, 21609, 28812, 29403, 29696, 43218, 43776, 44000, 58806, 63488, 75600, 96040, 104000, 105984, 123201, 126000
Offset: 1

Views

Author

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions that are fixed points under the map described in A217605 (which interchanges the parts with their multiplicities). The enumeration of these partitions by sum is given by A217605. - Gus Wiseman, May 04 2019

Examples

			12 = (2^2)*(3^1) = (2nd prime)^pi(2) * (first prime)^pi(3).
From _Gus Wiseman_, May 04 2019: (Start)
The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     9: {2,2}
    12: {1,1,2}
    18: {1,2,2}
    40: {1,1,1,3}
   112: {1,1,1,1,4}
   125: {3,3,3}
   250: {1,3,3,3}
   352: {1,1,1,1,1,5}
   360: {1,1,1,2,2,3}
   675: {2,2,2,3,3}
   832: {1,1,1,1,1,1,6}
  1008: {1,1,1,1,2,2,4}
  1125: {2,2,3,3,3}
  1350: {1,2,2,2,3,3}
  1500: {1,1,2,3,3,3}
  2176: {1,1,1,1,1,1,1,7}
  2250: {1,2,2,3,3,3}
  2401: {4,4,4,4}
(End)
		

Crossrefs

Programs

  • Mathematica
    wt[n_]:=Times@@Cases[FactorInteger[n],{p_,k_}:>Prime[k]^PrimePi[p]];
    Select[Range[1000],wt[#]==#&] (* Gus Wiseman, May 04 2019 *)
  • PARI
    is(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); #Set(e) == #e && prod(i = 1, #e, prime(e[i])^primepi(p[i])) == n;} \\ Amiram Eldar, Oct 20 2023

Extensions

a(1) inserted and more terms added by Amiram Eldar, Oct 20 2023

A324695 Lexicographically earliest sequence of positive integers whose prime indices are not already in the sequence.

Original entry on oeis.org

1, 3, 7, 9, 11, 13, 19, 21, 27, 29, 33, 37, 39, 43, 47, 49, 53, 57, 59, 61, 63, 71, 77, 79, 81, 83, 87, 89, 91, 97, 99, 101, 107, 111, 113, 117, 121, 127, 129, 131, 133, 139, 141, 143, 147, 149, 151, 159, 163, 169, 171, 173, 177, 179, 181, 183, 189, 193, 197
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  19: {8}
  21: {2,4}
  27: {2,2,2}
  29: {10}
  33: {2,5}
  37: {12}
  39: {2,6}
  43: {14}
  47: {15}
  49: {4,4}
  53: {16}
  57: {2,8}
  59: {17}
  61: {18}
  63: {2,2,4}
		

Crossrefs

Programs

  • Mathematica
    aQ[n_]:=And@@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>!aQ[PrimePi[p]]];
    Select[Range[100],aQ]

A276078 Numbers n in whose prime factorization no exponent of any prime(k) exceeds k.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121
Offset: 1

Views

Author

Antti Karttunen, Aug 18 2016

Keywords

Comments

Numbers not divisible by p^(1+A000720(p)) for any prime p, where A000720(p) gives the index of prime p: 1 for 2, 2 for 3, 3 for 5, and so on.
Also Heinz numbers of integer partitions where the multiplicity of i does not exceed i for any i (A052335). Differs from A048103 in lacking {625, 1250, 1875, 3750, 4375, 5625, 6875, 8125, 8750, ...}. - Gus Wiseman, Mar 09 2019
Asymptotic density is Product_{i>=1} 1-prime(i)^(-1-i) = 0.72102334... - Amiram Eldar, Oct 20 2020

Crossrefs

Positions of zeros in A276077.
Complement: A276079.
Sequence A276076 sorted into ascending order.
Subsequence of A048103 from which it differs for the first time at n=451, where a(451) = 626, while A048103(451) = 625, a value missing from here.

Programs

  • Mathematica
    Select[Range@ 121, Or[# == 1, AllTrue[FactorInteger[#], PrimePi[#1] >= #2 & @@ # &]] &] (* Michael De Vlieger, Jun 24 2017 *)
  • PARI
    isok(n) = my(f=factor(n)); for (k=1, #f~, if (f[k, 2] > primepi(f[k, 1]), return(0))); return (1); \\ Michel Marcus, Jun 24 2017
    
  • PARI
    is(n) = {my(t=1);forprime(p = 2, , t++; pp = p^t; if(n%pp==0, return(0)); if(pp > n, return(1)))} \\ David A. Corneth, Jun 24 2017
    
  • PARI
    upto(n) = {my(v = vector(n,i,1), t=1, res=List()); forprime(p=2, , t++; pp = p^t; if(pp>n, break); for(i=1, n\pp, v[pp*i] = 0)); for(i=1, n, if(v[i]==1, listput(res, i))); res} \\ David A. Corneth, Jun 24 2017
  • Python
    from sympy import factorint, primepi
    def ok(n):
        f = factorint(n)
        return all(f[i] <= primepi(i) for i in f)
    print([n for n in range(1, 151) if ok(n)]) # Indranil Ghosh, Jun 24 2017
    

A324694 Lexicographically earliest sequence of positive integers divisible by prime(m) for some m not already in the sequence.

Original entry on oeis.org

2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 34, 35, 36, 38, 40, 41, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   4: {1,1}
   5: {3}
   6: {1,2}
   8: {1,1,1}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  18: {1,2,2}
  20: {1,1,3}
  22: {1,5}
  23: {9}
  24: {1,1,1,2}
  25: {3,3}
  26: {1,6}
  28: {1,1,4}
  30: {1,2,3}
		

Crossrefs

Programs

  • Mathematica
    aQ[n_]:=!And@@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>aQ[PrimePi[p]]];
    Select[Range[100],aQ]

A109297 Primal codes of finite permutations on positive integers.

Original entry on oeis.org

1, 2, 9, 12, 18, 40, 112, 125, 250, 352, 360, 540, 600, 675, 832, 1008, 1125, 1350, 1500, 2176, 2250, 2268, 2352, 2401, 3168, 3969, 4802, 4864, 7488, 7938, 10692, 11616, 11776, 14000, 19584, 21609, 27440, 28812, 29403, 29696, 32448, 35000, 37908, 43218, 43776
Offset: 1

Views

Author

Jon Awbrey, Jul 08 2005

Keywords

Comments

A finite permutation is a bijective mapping from a finite set to itself, counting the empty mapping as a permutation of the empty set.
Also Heinz numbers of integer partitions where the set of distinct parts is equal to the set of distinct multiplicities. These partitions are counted by A114640. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 02 2019

Examples

			Writing (prime(i))^j as i:j, we have the following table:
Primal Codes of Finite Permutations on Positive Integers
` ` ` 1 = { }
` ` ` 2 = 1:1
` ` ` 9 = 2:2
` ` `12 = 1:2 2:1
` ` `18 = 1:1 2:2
` ` `40 = 1:3 3:1
` ` 112 = 1:4 4:1
` ` 125 = 3:3
` ` 250 = 1:1 3:3
` ` 352 = 1:5 5:1
` ` 360 = 1:3 2:2 3:1
` ` 540 = 1:2 2:3 3:1
` ` 600 = 1:3 2:1 3:2
` ` 675 = 2:3 3:2
` ` 832 = 1:6 6:1
` `1008 = 1:4 2:2 4:1
` `1125 = 2:2 3:3
` `1350 = 1:1 2:3 3:2
` `1500 = 1:2 2:1 3:3
` `2176 = 1:7 7:1
` `2250 = 1:1 2:2 3:3
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local k; for k from 1+`if`(n=1, 0,
          a(n-1)) while (l-> sort(map(i-> i[2], l)) <> sort(map(
          i-> numtheory[pi](i[1]), l)))(ifactors(k)[2]) do od; k
        end:
    seq(a(n), n=1..45);  # Alois P. Heinz, Mar 08 2019
  • Mathematica
    Select[Range[1000],#==1||Union[PrimePi/@First/@FactorInteger[#]]==Union[Last/@FactorInteger[#]]&] (* Gus Wiseman, Apr 02 2019 *)
  • PARI
    is(n) = {my(f = factor(n), p = f[,1], e = vecsort(f[,2])); for(i=1, #p, if(primepi(p[i]) != e[i], return(0))); 1}; \\ Amiram Eldar, Jul 30 2022

Extensions

More terms from Franklin T. Adams-Watters, Dec 19 2005
Offset set to 1 by Alois P. Heinz, Mar 08 2019

A325131 Heinz numbers of integer partitions where the set of distinct parts is disjoint from the set of distinct multiplicities.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 11, 13, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 100, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 127
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2019

Keywords

Comments

The enumeration of these partitions by sum is given by A114639.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers where the prime indices are disjoint from the prime exponents.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
  11: {5}
  13: {6}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  32: {1,1,1,1,1}
  33: {2,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Intersection[PrimePi/@First/@FactorInteger[#],Last/@FactorInteger[#]]=={}&]

A383512 Heinz numbers of conjugate Wilf partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85
Offset: 1

Views

Author

Gus Wiseman, May 13 2025

Keywords

Comments

First differs from A364347 in having 130 and lacking 110.
First differs from A381432 in lacking 65 and 133.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
An integer partition is Wilf iff its multiplicities are all different (ranked by A130091). It is conjugate Wilf iff its nonzero 0-appended differences are all different (ranked by A383512).

Examples

			The terms together with their prime indices begin:
     1: {}           17: {7}            35: {3,4}
     2: {1}          19: {8}            37: {12}
     3: {2}          20: {1,1,3}        38: {1,8}
     4: {1,1}        22: {1,5}          39: {2,6}
     5: {3}          23: {9}            40: {1,1,1,3}
     7: {4}          25: {3,3}          41: {13}
     8: {1,1,1}      26: {1,6}          43: {14}
     9: {2,2}        27: {2,2,2}        44: {1,1,5}
    10: {1,3}        28: {1,1,4}        45: {2,2,3}
    11: {5}          29: {10}           46: {1,9}
    13: {6}          31: {11}           47: {15}
    14: {1,4}        32: {1,1,1,1,1}    49: {4,4}
    15: {2,3}        33: {2,5}          50: {1,3,3}
    16: {1,1,1,1}    34: {1,7}          51: {2,7}
		

Crossrefs

Partitions of this type are counted by A098859.
The conjugate version is A130091, complement A130092.
Including differences of 0 gives A325367, counted by A325324.
The strict case is A325388, counted by A320348.
The complement is A383513, counted by A336866.
Also requiring distinct multiplicities gives A383532, counted by A383507.
These are the positions of strict rows in A383534, or squarefree numbers in A383535.
A000040 lists the primes, differences A001223.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A325349 counts partitions with distinct augmented differences, ranks A325366.
A383530 counts partitions that are not Wilf or conjugate Wilf, ranks A383531.
A383709 counts Wilf partitions with distinct augmented differences, ranks A383712.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], UnsameQ@@DeleteCases[Differences[Prepend[prix[#],0]],0]&]
Showing 1-10 of 42 results. Next