cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 53 results. Next

A130091 Numbers having in their canonical prime factorization mutually distinct exponents.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116
Offset: 1

Views

Author

Reinhard Zumkeller, May 06 2007

Keywords

Comments

This sequence does not contain any number of the form 36n-6 or 36n+6, as such numbers are divisible by 6 but not by 4 or 9. Consequently, this sequence does not contain 24 consecutive integers. The quest for the greatest number of consecutive integers in this sequence has ties to the ABC conjecture (see the MathOverflow link). - Danny Rorabaugh, Sep 23 2015
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with distinct multiplicities. The enumeration of these partitions by sum is given by A098859. - Gus Wiseman, May 04 2019
Aktaş and Ram Murty (2017) called these terms "special numbers" ("for lack of a better word"). They prove that the number of terms below x is ~ c*x/log(x), where c > 1 is a constant. - Amiram Eldar, Feb 25 2021
Sequence A005940(1+A328592(n)), n >= 1, sorted into ascending order. - Antti Karttunen, Apr 03 2022

Examples

			From _Gus Wiseman_, May 04 2019: (Start)
The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  18: {1,2,2}
  19: {8}
  20: {1,1,3}
  23: {9}
  24: {1,1,1,2}
  25: {3,3}
  27: {2,2,2}
(End)
		

Crossrefs

Programs

  • Maple
    filter:= proc(t) local f;
    f:= map2(op,2,ifactors(t)[2]);
    nops(f) = nops(convert(f,set));
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 30 2015
  • Mathematica
    t[n_] := FactorInteger[n][[All, 2]]; Select[Range[400],  Union[t[#]] == Sort[t[#]] &]  (* Clark Kimberling, Mar 12 2015 *)
  • PARI
    isok(n) = {nbf = omega(n); f = factor(n); for (i = 1, nbf, for (j = i+1, nbf, if (f[i, 2] == f[j, 2], return (0)););); return (1);} \\ Michel Marcus, Aug 18 2013
    
  • PARI
    isA130091(n) = issquarefree(factorback(apply(e->prime(e), (factor(n)[, 2])))); \\ Antti Karttunen, Apr 03 2022

Formula

a(n) < A130092(n) for n<=150, a(n) > A130092(n) for n>150.

A048767 If n = Product (p_j^k_j) then a(n) = Product ( prime(k_j)^pi(p_j) ) where pi is A000720.

Original entry on oeis.org

1, 2, 4, 3, 8, 8, 16, 5, 9, 16, 32, 12, 64, 32, 32, 7, 128, 18, 256, 24, 64, 64, 512, 20, 27, 128, 25, 48, 1024, 64, 2048, 11, 128, 256, 128, 27, 4096, 512, 256, 40, 8192, 128, 16384, 96, 72, 1024, 32768, 28, 81, 54, 512, 192, 65536, 50, 256, 80, 1024, 2048
Offset: 1

Views

Author

Keywords

Comments

If the prime power factors p^e of n are replaced by prime(e)^pi(p), then the prime terms q in the sequence pertain to 2^m with m > 1, since pi(2) = 1. - Michael De Vlieger, Apr 25 2017
Also the Heinz number of the integer partition obtained by applying the map described in A217605 (which interchanges the parts with their multiplicities) to the integer partition with Heinz number n, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The image of this map (which is the union of this sequence) is A130091. - Gus Wiseman, May 04 2019

Examples

			For n=6, 6 = (2^1)*(3^1), a(6) = ([first prime]^pi(2))*([first prime]^pi(3)) = (2^1)*(2^2) = 8.
From _Gus Wiseman_, May 04 2019: (Start)
For n = 1..20, the prime indices of n together with the prime indices of a(n) are the following:
   1: {} {}
   2: {1} {1}
   3: {2} {1,1}
   4: {1,1} {2}
   5: {3} {1,1,1}
   6: {1,2} {1,1,1}
   7: {4} {1,1,1,1}
   8: {1,1,1} {3}
   9: {2,2} {2,2}
  10: {1,3} {1,1,1,1}
  11: {5} {1,1,1,1,1}
  12: {1,1,2} {1,1,2}
  13: {6} {1,1,1,1,1,1}
  14: {1,4} {1,1,1,1,1}
  15: {2,3} {1,1,1,1,1}
  16: {1,1,1,1} {4}
  17: {7} {1,1,1,1,1,1,1}
  18: {1,2,2} {1,2,2}
  19: {8} {1,1,1,1,1,1,1,1}
  20: {1,1,3} {1,1,1,2}
(End)
		

Crossrefs

Programs

  • Maple
    A048767 := proc(n)
        local a,p,e,f;
        a := 1 ;
        for f in ifactors(n)[2] do
            p := op(1,f) ;
            e := op(2,f) ;
            a := a*ithprime(e)^numtheory[pi](p) ;
        end do:
        a ;
    end proc: # R. J. Mathar, Nov 08 2012
  • Mathematica
    Table[{p, k} = Transpose@ FactorInteger[n]; Times @@ (Prime[k]^PrimePi[p]), {n, 58}] (* Ivan Neretin, Jun 02 2016 *)
    Array[Apply[Times, FactorInteger[#] /. {p_, e_} /; e >= 0 :> Prime[e]^PrimePi[p]] &, 65] (* Michael De Vlieger, Apr 25 2017 *)

Extensions

a(1)=1 prepended by Alois P. Heinz, Jul 26 2015

A381432 Heinz numbers of section-sum partitions. Union of A381431.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

First differs from A320340, A364347, A350838 in containing 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   20: {1,1,3}
   22: {1,5}
   23: {9}
   25: {3,3}
   26: {1,6}
   27: {2,2,2}
		

Crossrefs

Partitions of this type are counted by A239455, complement A351293.
The conjugate is A351294, union of A048767 (parts A381440, fixed A048768, A217605).
Union of A381431 (parts A381436).
The complement is A381433, conjugate A351295.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&]

A381433 Heinz numbers of non section-sum partitions. Complement of A381431.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 110, 114, 120, 126, 132, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 198, 204, 210, 216, 220, 222, 228, 231, 234, 238, 240, 246, 252, 258
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

First differs from A364348, A364537, A350845 in not containing 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   12: {1,1,2}
   18: {1,2,2}
   21: {2,4}
   24: {1,1,1,2}
   30: {1,2,3}
   36: {1,1,2,2}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   70: {1,3,4}
   72: {1,1,1,2,2}
   78: {1,2,6}
   84: {1,1,2,4}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
  102: {1,2,7}
  105: {2,3,4}
  108: {1,1,2,2,2}
		

Crossrefs

Partitions of this type are counted by A351293, complement A239455.
The conjugate is A351295, union of A048767 (parts A381440, fixed A048768, A217605).
The complement is A381432, union of A381431 (conjugate A351294, parts A381436).
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],!MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&]

A217605 Number of partitions of n that are fixed points of a certain map (see comment).

Original entry on oeis.org

1, 1, 0, 0, 2, 1, 1, 0, 1, 1, 3, 0, 3, 3, 3, 0, 4, 3, 2, 1, 6, 4, 5, 2, 5, 7, 10, 2, 10, 10, 11, 4, 9, 5, 14, 7, 13, 13, 18, 7, 20, 17, 22, 10, 22, 19, 32, 15, 26, 26, 40, 15, 37, 36, 43, 21, 44, 32, 55, 30, 46, 43, 75, 32, 67, 62, 83, 40, 82, 61, 104, 58, 89, 71, 136, 66, 114, 97, 149, 77, 143, 106, 176, 101, 160, 123, 222, 114, 190
Offset: 0

Views

Author

Joerg Arndt, Oct 08 2012

Keywords

Comments

Writing a partition of n in the form sum(k>=1, c(k) * k) another (in general different) partition is obtained as sum(k>=1, k * c(k)). For example, the partition 6 = 4* 1 + 1* 2 = 1 + 1 + 1 + 1 + 2 is mapped to 1* 4 + 2 *1 = 2* 1 + 1* 4 = 2 + 2 + 4. This sequence counts the fixed points of this map.
The map is not surjective. For example, all partitions into distinct parts are mapped to n* 1.
The map is an involution for partitions where the multiplicities of all parts are distinct (Wilf partitions, see A098859). If in addition the set of parts the same as the set of multiplicities then the partition is a fixed point.
The second part of the preceding comment is incorrect. For example, the partition (3,3,2,1,1,1) maps to (3,2,2,2,1,1) so is not a fixed point, even though the set of parts is identical to the set of multiplicities. - Gus Wiseman, May 04 2019

Examples

			a(16) = 4 because the following partitions of 16 are fixed points:
  4* 2 + 2* 4  =   2 + 2 + 2 + 2 + 4 + 4
  4* 4  =   4 + 4 + 4 + 4
  6* 1 + 2* 2 + 1* 6  =   1 + 1 + 1 + 1 + 1 + 1 + 2 + 2 + 6
  8* 1 + 1* 8  =   1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 8
From _Gus Wiseman_, May 04 2019: (Start)
The a(1) = 1 through a(16) = 4 partitions are the following (empty columns not shown). The Heinz numbers of these partitions are given by A048768.
  1  22   221  3111  41111  333  3331    33222    33322   333221    4444
     211                         322111  4221111  332221  52211111  442222
                                 511111  6111111  333211  71111111  622111111
                                                                    811111111
(End)
		

Crossrefs

Programs

  • Mathematica
    winv[n_]:=Times@@Cases[FactorInteger[n],{p_,k_}:>Prime[k]^PrimePi[p]];
    Table[Length[Select[IntegerPartitions[n],winv[Times@@Prime/@#]==Times@@Prime/@#&]],{n,0,30}] (* Gus Wiseman, May 04 2019 *)

A383706 Number of ways to choose disjoint strict integer partitions, one of each prime index of n.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, 2, 0, 0, 1, 3, 0, 4, 1, 1, 0, 5, 0, 6, 0, 2, 2, 8, 0, 2, 2, 0, 0, 10, 1, 12, 0, 2, 3, 2, 0, 15, 3, 2, 0, 18, 1, 22, 0, 0, 5, 27, 0, 2, 0, 3, 0, 32, 0, 3, 0, 4, 5, 38, 0, 46, 7, 0, 0, 4, 1, 54, 0, 5, 1, 64, 0, 76, 8, 0, 0, 3, 1, 89, 0, 0, 10
Offset: 1

Views

Author

Gus Wiseman, May 15 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 25 are (3,3), for which we have choices ((3),(2,1)) and ((2,1),(3)), so a(25) = 2.
The prime indices of 91 are (4,6), for which we have choices ((4),(6)), ((4),(5,1)), ((4),(3,2,1)), ((3,1),(6)), ((3,1),(4,2)), so a(91) = 5.
The prime indices of 273 are (2,4,6), for which we have choices ((2),(4),(6)), ((2),(4),(5,1)), ((2),(3,1),(6)), so a(273) = 3.
		

Crossrefs

Adding up over all integer partitions gives A279790, strict A279375.
Without disjointness we have A357982, non-strict version A299200.
For multiplicities instead of indices we have A382525.
Positions of 0 appear to be A382912, counted by A383710, odd case A383711.
Positions of positive terms are A382913, counted by A383708, odd case A383533.
Positions of 1 are A383707, counted by A179009.
The conjugate version is A384005.
A000041 counts integer partitions, strict A000009.
A048767 is the Look-and-Say transform, fixed points A048768, counted by A217605.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[pof[prix[n]]],{n,100}]

A381431 Heinz number of the section-sum partition of the prime indices of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 10, 13, 11, 11, 16, 17, 15, 19, 14, 13, 13, 23, 20, 25, 17, 27, 22, 29, 13, 31, 32, 17, 19, 17, 25, 37, 23, 19, 28, 41, 17, 43, 26, 33, 29, 47, 40, 49, 35, 23, 34, 53, 45, 19, 44, 29, 31, 59, 26, 61, 37, 39, 64, 23, 19, 67, 38
Offset: 1

Views

Author

Gus Wiseman, Feb 26 2025

Keywords

Comments

The image first differs from A320340, A364347, A350838 in containing a(150) = 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			Prime indices of 180 are (3,2,2,1,1), with section-sum partition (6,3), so a(180) = 65.
The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
   7: {4}
  11: {5}
  10: {1,3}
  13: {6}
  11: {5}
  11: {5}
  16: {1,1,1,1}
		

Crossrefs

The conjugate is A048767, union A351294, complement A351295, fix A048768 (count A217605).
Taking length instead of sum in the definition gives A238745, conjugate A181819.
Partitions of this type are counted by A239455, complement A351293.
The union is A381432, complement A381433.
Values appearing only once are A381434, more than once A381435.
These are the Heinz numbers of rows of A381436, conjugate A381440.
Greatest prime index of each term is A381437, counted by A381438.
A000040 lists the primes, differences A001223.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Table[Times@@Prime/@egs[prix[n]],{n,100}]

Formula

A122111(a(n)) = A048767(n).

A317081 Number of integer partitions of n whose multiplicities cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 5, 9, 11, 16, 20, 30, 34, 50, 58, 79, 96, 129, 152, 203, 243, 307, 375, 474, 563, 707, 850, 1042, 1246, 1532, 1815, 2215, 2632, 3173, 3765, 4525, 5323, 6375, 7519, 8916, 10478, 12414, 14523, 17133, 20034, 23488, 27422, 32090, 37285, 43511, 50559
Offset: 0

Views

Author

Gus Wiseman, Jul 21 2018

Keywords

Comments

Also the number of integer partitions of n with distinct section-sums, where the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. - Gus Wiseman, Apr 21 2025

Examples

			The a(1) = 1 through a(9) = 16 partitions:
 (1) (2) (3)  (4)   (5)   (6)   (7)    (8)    (9)
         (21) (31)  (32)  (42)  (43)   (53)   (54)
              (211) (41)  (51)  (52)   (62)   (63)
                    (221) (321) (61)   (71)   (72)
                    (311) (411) (322)  (332)  (81)
                                (331)  (422)  (432)
                                (421)  (431)  (441)
                                (511)  (521)  (522)
                                (3211) (611)  (531)
                                       (3221) (621)
                                       (4211) (711)
                                              (3321)
                                              (4221)
                                              (4311)
                                              (5211)
                                              (32211)
		

Crossrefs

The case with parts also covering an initial interval is A317088.
These partitions are ranked by A317090.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A047966 counts partitions with constant section-sums.
A048767 interchanges prime indices and prime multiplicities (Look-and-Say), see A048768.
A055932 lists numbers whose prime indices cover an initial interval.
A116540 counts normal set multipartitions.
A304442 counts partitions with equal run-sums, ranks A353833.
A381436 lists the section-sum partition of prime indices.
A381440 lists the Look-and-Say partition of prime indices.

Programs

  • Mathematica
    normalQ[m_]:=Union[m]==Range[Max[m]];
    Table[Length[Select[IntegerPartitions[n],normalQ[Length/@Split[#]]&]],{n,30}]
  • Python
    from sympy.utilities.iterables import partitions
    def A317081(n):
        if n == 0:
            return 1
        c = 0
        for d in partitions(n):
            s = set(d.values())
            if len(s) == max(s):
                c += 1
        return c # Chai Wah Wu, Jun 22 2020

A382525 Number of times n appears in A048767 (rank of Look-and-Say partition of prime indices). Number of ordered set partitions whose block-sums are the prime signature of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 3, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 4, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2025

Keywords

Comments

The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. Hence, the multiplicity of k in the Look-and-Say partition of y is the sum of all parts that appear exactly k times. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also the number of ways to choose a set of disjoint strict integer partitions, one of each nonzero multiplicity in the prime factorization of n.

Examples

			The a(27) = 2 partitions with Look-and-Say partition (2,2,2) are: (3,3), (2,2,1,1).
The prime indices of 3456 are {1,1,1,1,1,1,1,2,2,2}, and the partitions with Look-and-Say partition (2,2,2,1,1,1,1,1,1,1) are:
  (7,3,3)
  (7,2,2,1,1)
  (6,3,3,1)
  (5,3,3,2)
  (4,3,3,2,1)
  (4,3,2,2,1,1)
so a(3456) = 6.
		

Crossrefs

Positions of positive terms are A351294, conjugate A381432.
Positions of 0 are A351295, conjugate A381433.
Positions of 1 are A381540, conjugate A381434.
Positions of terms > 1 are A381541, conjugate A381435.
Positions of first appearances are A382775.
A000670 counts ordered set partitions.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A381436 lists the section-sum partition of prime indices, ranks A381431.
A381440 lists the Look-and-Say partition of prime indices, ranks A048767.

Programs

  • Mathematica
    stp[y_]:=Select[Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@y],UnsameQ@@Join@@#&];
    Table[Length[stp[Last/@FactorInteger[n]]],{n,100}]

Formula

a(2^n) = A000009(n).
a(prime(n)) = 1.

A383708 Number of integer partitions of n such that it is possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 5, 7, 8, 13, 14, 18, 22, 27, 36, 41, 50, 61, 73, 86
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

Also the number of integer partitions y of n whose normal multiset (in which i appears y_i times) is a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is counted under a(6).
The a(1) = 1 through a(9) = 8 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)      (9)
            (2,1)  (3,1)  (3,2)  (3,3)    (4,3)    (4,4)    (5,4)
                          (4,1)  (4,2)    (5,2)    (5,3)    (6,3)
                                 (5,1)    (6,1)    (6,2)    (7,2)
                                 (3,2,1)  (4,2,1)  (7,1)    (8,1)
                                                   (4,3,1)  (4,3,2)
                                                   (5,2,1)  (5,3,1)
                                                            (6,2,1)
		

Crossrefs

These partitions have Heinz numbers A382913.
Without ones we have A383533, complement A383711.
The number of such families for each Heinz number is A383706.
The complement is counted by A383710, ranks A382912.
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n], pof[#]!={}&]],{n,15}]
Showing 1-10 of 53 results. Next