A005649 Expansion of e.g.f. (2 - e^x)^(-2).
1, 2, 8, 44, 308, 2612, 25988, 296564, 3816548, 54667412, 862440068, 14857100084, 277474957988, 5584100659412, 120462266974148, 2772968936479604, 67843210855558628, 1757952715142990612, 48093560991292628228, 1385244691781856307124
Offset: 0
A381432 Heinz numbers of section-sum partitions. Union of A381431.
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83
Offset: 1
Keywords
Comments
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 3: {2} 4: {1,1} 5: {3} 7: {4} 8: {1,1,1} 9: {2,2} 10: {1,3} 11: {5} 13: {6} 14: {1,4} 15: {2,3} 16: {1,1,1,1} 17: {7} 19: {8} 20: {1,1,3} 22: {1,5} 23: {9} 25: {3,3} 26: {1,6} 27: {2,2,2}
Crossrefs
A122111 represents conjugation in terms of Heinz numbers.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]]; Select[Range[100],MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&]
A381433 Heinz numbers of non section-sum partitions. Complement of A381431.
6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 110, 114, 120, 126, 132, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 198, 204, 210, 216, 220, 222, 228, 231, 234, 238, 240, 246, 252, 258
Offset: 1
Keywords
Comments
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
Examples
The terms together with their prime indices begin: 6: {1,2} 12: {1,1,2} 18: {1,2,2} 21: {2,4} 24: {1,1,1,2} 30: {1,2,3} 36: {1,1,2,2} 42: {1,2,4} 48: {1,1,1,1,2} 54: {1,2,2,2} 60: {1,1,2,3} 63: {2,2,4} 66: {1,2,5} 70: {1,3,4} 72: {1,1,1,2,2} 78: {1,2,6} 84: {1,1,2,4} 90: {1,2,2,3} 96: {1,1,1,1,1,2} 102: {1,2,7} 105: {2,3,4} 108: {1,1,2,2,2}
Crossrefs
A122111 represents conjugation in terms of Heinz numbers.
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]]; Select[Range[100],!MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&]
A317245 Number of supernormal integer partitions of n.
1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 1, 3, 3, 4, 2, 4, 5, 6, 6, 10, 7, 10, 9, 9, 10, 11, 12, 12, 21, 12, 18, 17, 21, 19, 28, 23, 28, 26, 27, 24, 32, 29, 36, 34, 46, 42, 55, 48, 65, 65, 74, 70, 88, 81, 83, 103, 112, 129, 153, 157, 190, 205, 210, 242, 283, 276, 321
Offset: 0
Keywords
Comments
An integer partition is supernormal if either (1) it is of the form 1^n for some n >= 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a supernormal integer partition.
Examples
The a(10) = 4 supernormal integer partitions are (4321), (33211), (322111), (1111111111). The a(21) = 10 supernormal integer partitions: (654321), (4443321), (44432211), (44333211), (44332221), (4432221111), (4333221111), (4332222111), (433322211), (111111111111111111111).
Crossrefs
Programs
-
Mathematica
supnrm[q_]:=Or[q=={}||Union[q]=={1},And[Union[q]==Range[Max[q]],supnrm[Sort[Length/@Split[q],Greater]]]]; Table[Length[Select[IntegerPartitions[n],supnrm]],{n,0,30}]
A317491 Number of fully normal integer partitions of n.
1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 30, 33, 46, 50, 68, 77, 100, 112, 146, 167, 201, 234, 290, 326, 400, 456, 545, 622, 744, 845, 1004, 1153, 1351, 1551, 1819, 2103, 2434, 2808, 3248, 3735, 4304, 4943, 5661, 6506, 7446, 8499, 9657, 11070, 12505, 14325, 16183
Offset: 0
Keywords
Comments
An integer partition is fully normal if either it is of the form (1,1,...,1) or its multiplicities span an initial interval of positive integers and, sorted in weakly decreasing order, are themselves fully normal.
Examples
The a(6) = 6 fully normal partitions are (6), (51), (42), (411), (321), (111111). Missing from this list are (33), (3111), (222), (2211), (21111).
Crossrefs
Programs
-
Mathematica
fulnrmQ[ptn_]:=With[{qtn=Sort[Length/@Split[ptn],Greater]},Or[ptn=={}||Union[ptn]=={1},And[Union[qtn]==Range[Max[qtn]],fulnrmQ[qtn]]]]; Table[Length[Select[IntegerPartitions[n],fulnrmQ]],{n,0,30}]
Formula
a(n) = A317245(n) iff n is 1 or a prime number.
A353863 Number of integer partitions of n whose weak run-sums cover an initial interval of nonnegative integers.
1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 11, 16, 20, 24, 30, 43, 47, 62, 79, 94, 113, 143, 170, 211, 256, 307, 372, 449, 531, 648, 779, 926, 1100, 1323, 1562, 1864, 2190, 2595, 3053, 3611, 4242, 4977, 5834, 6825, 7973, 9344, 10844, 12641, 14699, 17072, 19822
Offset: 0
Keywords
Comments
A weak run-sum of a sequence is the sum of any consecutive constant subsequence. For example, the weak run-sums of (3,2,2,1) are {1,2,3,4}.
This is a kind of completeness property, cf. A126796.
Examples
The a(1) = 1 through a(8) = 7 partitions: (1) (11) (21) (211) (311) (321) (3211) (3221) (111) (1111) (2111) (3111) (4111) (32111) (11111) (21111) (22111) (41111) (111111) (31111) (221111) (211111) (311111) (1111111) (2111111) (11111111)
Crossrefs
For parts instead of weak run-sums we have A000009.
For multiplicities instead of weak run-sums we have A317081.
A005811 counts runs in binary expansion.
A353835 counts distinct run-sums of prime indices.
A353861 counts distinct weak run-sums of prime indices.
A353932 lists run-sums of standard compositions.
Programs
-
Mathematica
normQ[m_]:=m=={}||Union[m]==Range[Max[m]]; msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]]; wkrs[y_]:=Union[Total/@Select[msubs[y],SameQ@@#&]]; Table[Length[Select[IntegerPartitions[n],normQ[Rest[wkrs[#]]]&]],{n,0,15}]
-
PARI
\\ isok(p) tests the partition. isok(p)={my(b=0, s=0, t=0); for(i=1, #p, if(p[i]<>t, t=p[i]; s=0); s += t; b = bitor(b, 1<<(s-1))); bitand(b,b+1)==0} a(n) = {my(r=0); forpart(p=n, r+=isok(p)); r} \\ Andrew Howroyd, Jan 15 2024
Extensions
a(31) onwards from Andrew Howroyd, Jan 15 2024
A325337 Numbers whose prime exponents are distinct and cover an initial interval of positive integers.
1, 2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 37, 41, 43, 44, 45, 47, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 113, 116, 117, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153, 157, 163, 164
Offset: 1
Keywords
Comments
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with distinct multiplicities covering an initial interval of positive integers. The enumeration of these partitions by sum is given by A320348.
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 3: {2} 5: {3} 7: {4} 11: {5} 12: {1,1,2} 13: {6} 17: {7} 18: {1,2,2} 19: {8} 20: {1,1,3} 23: {9} 28: {1,1,4} 29: {10} 31: {11} 37: {12} 41: {13} 43: {14} 44: {1,1,5}
Crossrefs
Programs
-
Mathematica
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; Select[Range[100],UnsameQ@@Last/@FactorInteger[#]&&normQ[Last/@FactorInteger[#]]&]
A317256 Number of alternately co-strong integer partitions of n.
1, 1, 2, 3, 5, 6, 11, 13, 19, 25, 35, 42, 61, 74, 98, 122, 161, 194, 254, 304, 388, 472, 589, 700, 878, 1044, 1278, 1525, 1851, 2182, 2651, 3113, 3735, 4389, 5231, 6106, 7278, 8464, 9995, 11631, 13680, 15831, 18602, 21463, 25068, 28927, 33654, 38671, 44942, 51514
Offset: 0
Keywords
Comments
A sequence is alternately co-strong if either it is empty, equal to (1), or its run-lengths are weakly increasing (co-strong) and, when reversed, are themselves an alternately co-strong sequence.
Also the number of alternately strong reversed integer partitions of n.
Examples
The a(1) = 1 through a(7) = 13 partitions: (1) (2) (3) (4) (5) (6) (7) (11) (21) (22) (32) (33) (43) (111) (31) (41) (42) (52) (211) (311) (51) (61) (1111) (2111) (222) (322) (11111) (321) (421) (411) (511) (2211) (3211) (3111) (4111) (21111) (22111) (111111) (31111) (211111) (1111111) For example, starting with the partition y = (3,2,2,1,1) and repeatedly taking run-lengths and reversing gives (3,2,2,1,1) -> (2,2,1) -> (1,2), which is not weakly decreasing, so y is not alternately co-strong. On the other hand, we have (3,3,2,2,1,1,1) -> (3,2,2) -> (2,1) -> (1,1) -> (2) -> (1), so (3,3,2,2,1,1,1) is counted under a(13).
Crossrefs
Cf. A000041, A100883, A181819, A182850, A182857, A304660, A305563, A317081, A317086, A317245, A317258.
The Heinz numbers of these partitions are given by A317257.
The total (instead of alternating) version is A332275.
Dominates A332289 (the normal version).
The generalization to compositions is A332338.
The dual version is A332339.
The case of reversed partitions is (also) A332339.
Programs
-
Mathematica
tniQ[q_]:=Or[q=={},q=={1},And[LessEqual@@Length/@Split[q],tniQ[Reverse[Length/@Split[q]]]]]; Table[Length[Select[IntegerPartitions[n],tniQ]],{n,0,30}]
Extensions
Updated with corrected terminology by Gus Wiseman, Mar 08 2020
A325326 Heinz numbers of integer partitions covering an initial interval of positive integers with distinct multiplicities.
1, 2, 4, 8, 12, 16, 18, 24, 32, 48, 54, 64, 72, 96, 108, 128, 144, 162, 192, 256, 288, 324, 360, 384, 432, 486, 512, 540, 576, 600, 648, 720, 768, 864, 972, 1024, 1152, 1200, 1350, 1440, 1458, 1500, 1536, 1620, 1728, 1944, 2048, 2160, 2250, 2304, 2400, 2592
Offset: 1
Keywords
Comments
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum is given by A320348.
Examples
The sequence of terms together with their prime indices begins: 1: {} 2: {1} 4: {1,1} 8: {1,1,1} 12: {1,1,2} 16: {1,1,1,1} 18: {1,2,2} 24: {1,1,1,2} 32: {1,1,1,1,1} 48: {1,1,1,1,2} 54: {1,2,2,2} 64: {1,1,1,1,1,1} 72: {1,1,1,2,2} 96: {1,1,1,1,1,2} 108: {1,1,2,2,2} 128: {1,1,1,1,1,1,1} 144: {1,1,1,1,2,2} 162: {1,2,2,2,2} 192: {1,1,1,1,1,1,2} 256: {1,1,1,1,1,1,1,1} 288: {1,1,1,1,1,2,2} 324: {1,1,2,2,2,2} 360: {1,1,1,2,2,3} 384: {1,1,1,1,1,1,1,2}
Crossrefs
Programs
-
Mathematica
normQ[n_Integer]:=n==1||PrimePi/@First/@FactorInteger[n]==Range[PrimeNu[n]]; Select[Range[100],normQ[#]&&UnsameQ@@Last/@FactorInteger[#]&]
A332292 Number of widely alternately strongly normal integer partitions of n.
1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Comments
An integer partition is widely alternately strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) which, if reversed, are themselves a widely alternately strongly normal partition.
Also the number of widely alternately co-strongly normal reversed integer partitions of n.
Examples
The a(1) = 1, a(3) = 2, and a(21) = 3 partitions: (1) (21) (654321) (111) (4443321) (111111111111111111111) For example, starting with the partition y = (4,4,4,3,3,2,1) and repeatedly taking run-lengths and reversing gives (4,4,4,3,3,2,1) -> (1,1,2,3) -> (1,1,2) -> (1,2) -> (1,1). All of these are normal with weakly decreasing run-lengths, and the last is all 1's, so y is counted under a(21).
Crossrefs
Programs
-
Mathematica
totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],GreaterEqual@@Length/@Split[ptn],totnQ[Reverse[Length/@Split[ptn]]]]]; Table[Length[Select[IntegerPartitions[n],totnQ]],{n,0,30}]
Extensions
a(71)-a(77) from Jinyuan Wang, Jun 26 2020
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
Maxima
PARI
PARI
Formula