cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A317256 Number of alternately co-strong integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 13, 19, 25, 35, 42, 61, 74, 98, 122, 161, 194, 254, 304, 388, 472, 589, 700, 878, 1044, 1278, 1525, 1851, 2182, 2651, 3113, 3735, 4389, 5231, 6106, 7278, 8464, 9995, 11631, 13680, 15831, 18602, 21463, 25068, 28927, 33654, 38671, 44942, 51514
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2018

Keywords

Comments

A sequence is alternately co-strong if either it is empty, equal to (1), or its run-lengths are weakly increasing (co-strong) and, when reversed, are themselves an alternately co-strong sequence.
Also the number of alternately strong reversed integer partitions of n.

Examples

			The a(1) = 1 through a(7) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (311)    (51)      (61)
                    (1111)  (2111)   (222)     (322)
                            (11111)  (321)     (421)
                                     (411)     (511)
                                     (2211)    (3211)
                                     (3111)    (4111)
                                     (21111)   (22111)
                                     (111111)  (31111)
                                               (211111)
                                               (1111111)
For example, starting with the partition y = (3,2,2,1,1) and repeatedly taking run-lengths and reversing gives (3,2,2,1,1) -> (2,2,1) -> (1,2), which is not weakly decreasing, so y is not  alternately co-strong. On the other hand, we have (3,3,2,2,1,1,1) -> (3,2,2) -> (2,1) -> (1,1) -> (2) -> (1), so (3,3,2,2,1,1,1) is counted under a(13).
		

Crossrefs

The Heinz numbers of these partitions are given by A317257.
The total (instead of alternating) version is A332275.
Dominates A332289 (the normal version).
The generalization to compositions is A332338.
The dual version is A332339.
The case of reversed partitions is (also) A332339.

Programs

  • Mathematica
    tniQ[q_]:=Or[q=={},q=={1},And[LessEqual@@Length/@Split[q],tniQ[Reverse[Length/@Split[q]]]]];
    Table[Length[Select[IntegerPartitions[n],tniQ]],{n,0,30}]

Extensions

Updated with corrected terminology by Gus Wiseman, Mar 08 2020

A332340 Number of widely alternately co-strongly normal compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 9, 11, 13, 23, 53, 78, 120, 207, 357, 707, 1183, 2030, 3558, 6229, 10868
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2020

Keywords

Comments

An integer partition is widely alternately co-strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) with weakly increasing run-length (co-strong) which, if reversed, are themselves a widely alternately co-strongly normal partition.

Examples

			The a(1) = 1 through a(8) = 13 compositions:
  (1)  (11)  (12)   (121)   (122)    (123)     (1213)     (1232)
             (21)   (211)   (212)    (132)     (1231)     (1322)
             (111)  (1111)  (1211)   (213)     (1312)     (2123)
                            (11111)  (231)     (1321)     (2132)
                                     (312)     (2122)     (2312)
                                     (321)     (2131)     (2321)
                                     (1212)    (2311)     (3122)
                                     (2121)    (3121)     (3212)
                                     (111111)  (3211)     (12131)
                                               (12121)    (13121)
                                               (1111111)  (21212)
                                                          (122111)
                                                          (11111111)
For example, starting with the composition y = (122111) and repeatedly taking run-lengths and reversing gives (122111) -> (321) -> (111). All of these are normal with weakly increasing run-lengths and the last is all 1's, so y is counted under a(8).
		

Crossrefs

Normal compositions are A107429.
Compositions with normal run-lengths are A329766.
The Heinz numbers of the case of partitions are A332290.
The case of partitions is A332289.
The total (instead of alternating) version is A332337.
Not requiring normality gives A332338.
The strong version is this same sequence.
The narrow version is a(n) + 1 for n > 1.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Reverse[Length/@Split[ptn]]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],totnQ]],{n,0,10}]

A317257 Heinz numbers of alternately co-strong integer partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2018

Keywords

Comments

The first term absent from this sequence but present in A242031 is 180.
A sequence is alternately co-strong if either it is empty, equal to (1), or its run-lengths are weakly increasing (co-strong) and, when reversed, are themselves an alternately co-strong sequence.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    1: {}          16: {1,1,1,1}     32: {1,1,1,1,1}
    2: {1}         17: {7}           33: {2,5}
    3: {2}         19: {8}           34: {1,7}
    4: {1,1}       20: {1,1,3}       35: {3,4}
    5: {3}         21: {2,4}         36: {1,1,2,2}
    6: {1,2}       22: {1,5}         37: {12}
    7: {4}         23: {9}           38: {1,8}
    8: {1,1,1}     24: {1,1,1,2}     39: {2,6}
    9: {2,2}       25: {3,3}         40: {1,1,1,3}
   10: {1,3}       26: {1,6}         41: {13}
   11: {5}         27: {2,2,2}       42: {1,2,4}
   12: {1,1,2}     28: {1,1,4}       43: {14}
   13: {6}         29: {10}          44: {1,1,5}
   14: {1,4}       30: {1,2,3}       45: {2,2,3}
   15: {2,3}       31: {11}          46: {1,9}
		

Crossrefs

These partitions are counted by A317256.
The complement is A317258.
Totally co-strong partitions are counted by A332275.
Alternately co-strong compositions are counted by A332338.
Alternately co-strong reversed partitions are counted by A332339.
The total version is A335376.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    totincQ[q_]:=Or[Length[q]<=1,And[OrderedQ[Length/@Split[q]],totincQ[Reverse[Length/@Split[q]]]]];
    Select[Range[100],totincQ[Reverse[primeMS[#]]]&]

Extensions

Updated with corrected terminology by Gus Wiseman, Jun 04 2020

A332291 Heinz numbers of widely totally strongly normal integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 18, 30, 32, 64, 128, 210, 256, 450, 512, 1024, 2048, 2250, 2310, 4096, 8192, 16384, 30030, 32768, 65536, 131072, 262144, 510510, 524288
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2020

Keywords

Comments

An integer partition is widely totally strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) which are themselves a widely totally strongly normal partition.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
This sequence is closed under A304660, so there are infinitely many terms that are not powers of 2 or primorial numbers.

Examples

			The sequence of all widely totally strongly normal integer partitions together with their Heinz numbers begins:
      1: ()
      2: (1)
      4: (1,1)
      6: (2,1)
      8: (1,1,1)
     16: (1,1,1,1)
     18: (2,2,1)
     30: (3,2,1)
     32: (1,1,1,1,1)
     64: (1,1,1,1,1,1)
    128: (1,1,1,1,1,1,1)
    210: (4,3,2,1)
    256: (1,1,1,1,1,1,1,1)
    450: (3,3,2,2,1)
    512: (1,1,1,1,1,1,1,1,1)
   1024: (1,1,1,1,1,1,1,1,1,1)
   2048: (1,1,1,1,1,1,1,1,1,1,1)
   2250: (3,3,3,2,2,1)
   2310: (5,4,3,2,1)
   4096: (1,1,1,1,1,1,1,1,1,1,1,1)
		

Crossrefs

Closed under A304660.
The non-strong version is A332276.
The co-strong version is A332293.
The case of reversed partitions is (also) A332293.
Heinz numbers of normal partitions with decreasing run-lengths are A025487.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],GreaterEqual@@Length/@Split[ptn],totnQ[Length/@Split[ptn]]]];
    Select[Range[10000],totnQ[Reverse[primeMS[#]]]&]

A332297 Number of narrowly totally strongly normal integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2020

Keywords

Comments

A partition is narrowly totally strongly normal if either it is empty, a singleton (narrow), or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) that are themselves a narrowly totally strongly normal partition.

Examples

			The a(1) = 1, a(2) = 2, a(3) = 3, and a(55) = 4 partitions:
  (1)  (2)    (3)      (55)
       (1,1)  (2,1)    (10,9,8,7,6,5,4,3,2,1)
              (1,1,1)  (5,5,5,5,5,4,4,4,4,3,3,3,2,2,1)
                       (1)^55
For example, starting with the partition (3,3,2,2,1) and repeatedly taking run-lengths gives (3,3,2,2,1) -> (2,2,1) -> (2,1) -> (1,1) -> (2). The first four are normal and have weakly decreasing run-lengths, and the last is a singleton, so (3,3,2,2,1) is counted under a(11).
		

Crossrefs

Normal partitions are A000009.
The non-totally normal version is A316496.
The widely alternating version is A332292.
The non-strong case of compositions is A332296.
The case of compositions is A332336.
The wide version is a(n) - 1 for n > 1.

Programs

  • Mathematica
    tinQ[q_]:=Or[q=={},Length[q]==1,And[Union[q]==Range[Max[q]],GreaterEqual@@Length/@Split[q],tinQ[Length/@Split[q]]]];
    Table[Length[Select[IntegerPartitions[n],tinQ]],{n,0,30}]

Extensions

a(60)-a(80) from Jinyuan Wang, Jun 26 2020

A332337 Number of widely totally strongly normal compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 9, 9, 12, 23, 54, 77, 116, 205, 352, 697, 1174, 2013, 3538, 6209, 10830
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2020

Keywords

Comments

A sequence is widely totally strongly normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) that are themselves a widely totally strongly normal sequence.

Examples

			The a(1) = 1 through a(8) = 12 compositions:
  (1)  (11)  (12)   (112)   (212)    (123)     (1213)     (1232)
             (21)   (121)   (221)    (132)     (1231)     (2123)
             (111)  (1111)  (11111)  (213)     (1312)     (2132)
                                     (231)     (1321)     (2312)
                                     (312)     (2131)     (2321)
                                     (321)     (3121)     (3212)
                                     (1212)    (11221)    (12131)
                                     (2121)    (12121)    (13121)
                                     (111111)  (1111111)  (21212)
                                                          (22112)
                                                          (111221)
                                                          (11111111)
For example, starting with (22112) and repeated taking run-lengths gives (22112) -> (221) -> (21) -> (11). These are all normal with weakly decreasing run-lengths, and the last is all 1's, so (22112) is counted under a(8).
		

Crossrefs

Normal compositions are A107429.
The case of partitions is A332278.
The non-strong version is A332279.
Heinz numbers in the case of partitions are A332291.
The narrow version is A332336.
The alternating version is A332340.
The co-strong version is this same sequence.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Length/@Split[ptn]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],totnQ]],{n,0,10}]

Formula

For n > 1, a(n) = A332336(n) - 1.

A332289 Number of widely alternately co-strongly normal integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Feb 13 2020

Keywords

Comments

An integer partition is widely alternately co-strongly normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly increasing run-lengths (co-strong) which, if reversed, are themselves a widely alternately co-strongly normal partition.

Examples

			The a(1) = 1, a(3) = 2, and a(10) = 3 partitions:
  (1)  (21)   (4321)
       (111)  (322111)
              (1111111111)
For example, starting with y = (4,3,2,2,1,1,1) and repeatedly taking run-lengths and reversing gives y -> (3,2,1,1) -> (2,1,1) -> (2,1) -> (1,1). These are all normal, have weakly increasing run-lengths, and the last is all 1's, so y is counted a(14).
		

Crossrefs

Normal partitions are A000009.
Dominated by A317245.
The non-co-strong version is A332277.
The total (instead of alternate) version is A332278.
The Heinz numbers of these partitions are A332290.
The strong version is A332292.
The case of reversed partitions is (also) A332292.
The generalization to compositions is A332340.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Reverse[Length/@Split[ptn]]]]];
    Table[Length[Select[IntegerPartitions[n],totnQ]],{n,0,30}]

A332278 Number of widely totally co-strongly normal integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Gus Wiseman, Mar 05 2020

Keywords

Comments

A sequence of integers is widely totally co-strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) with weakly increasing run-lengths (co-strong) which are themselves a widely totally co-strongly normal sequence.
Is this sequence bounded?

Examples

			The a(1) = 1 through a(20) = 2 partitions:
   1: (1)
   2: (11)
   3: (21),(111)
   4: (211),(1111)
   5: (11111)
   6: (321),(111111)
   7: (1111111)
   8: (11111111)
   9: (32211),(111111111)
  10: (4321),(322111),(1111111111)
  11: (11111111111)
  12: (111111111111)
  13: (1111111111111)
  14: (11111111111111)
  15: (54321),(111111111111111)
  16: (1111111111111111)
  17: (11111111111111111)
  18: (111111111111111111)
  19: (1111111111111111111)
  20: (4332221111),(11111111111111111111)
		

Crossrefs

Not requiring co-strength gives A332277.
The strong version is A332297(n) - 1 for n > 1.
The narrow version is a(n) - 1 for n > 1.
The alternating version is A332289.
The Heinz numbers of these partitions are A332293.
The case of compositions is A332337.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Length/@Split[ptn]]]];
    Table[Length[Select[IntegerPartitions[n],totnQ]],{n,0,30}]

Extensions

a(71)-a(78) from Jinyuan Wang, Jun 26 2020

A332336 Number of narrowly totally strongly normal compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 4, 4, 10, 10, 13, 24, 55, 78, 117, 206, 353, 698, 1175, 2014, 3539, 6210, 10831
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2020

Keywords

Comments

A sequence is narrowly totally strongly normal if either it is empty, a singleton (narrow), or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) that are themselves a narrowly totally strongly normal sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(1) = 1 through a(8) = 13 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (112)   (212)    (123)     (1213)     (1232)
             (21)   (121)   (221)    (132)     (1231)     (2123)
             (111)  (1111)  (11111)  (213)     (1312)     (2132)
                                     (231)     (1321)     (2312)
                                     (312)     (2131)     (2321)
                                     (321)     (3121)     (3212)
                                     (1212)    (11221)    (12131)
                                     (2121)    (12121)    (13121)
                                     (111111)  (1111111)  (21212)
                                                          (22112)
                                                          (111221)
                                                          (11111111)
For example, starting with (22112) and repeated taking run-lengths gives (22112) -> (221) -> (21) -> (11) -> (2). The first four are normal with weakly decreasing run-lengths, and the last is a singleton, so (22112) is counted under a(8).
		

Crossrefs

Normal compositions are A107429.
The non-strong version is A332296.
The case of partitions is A332297.
The co-strong version is A332336 (this sequence).
The wide version is A332337.

Programs

  • Mathematica
    tinQ[q_]:=Or[q=={},Length[q]==1,And[Union[q]==Range[Max[q]],GreaterEqual@@Length/@Split[q],tinQ[Length/@Split[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],tinQ]],{n,0,10}]

Formula

For n > 1, a(n) = A332337(n) + 1.

A332338 Number of alternately co-strong compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 24, 39, 72, 125, 224, 387, 697, 1205, 2141, 3736, 6598, 11516, 20331, 35526, 62507, 109436, 192200, 336533, 590582, 1034187
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2020

Keywords

Comments

A sequence is alternately co-strong if either it is empty, equal to (1), or its run-lengths are weakly increasing (co-strong) and, when reversed, are themselves an alternately co-strong sequence.

Examples

			The a(1) = 1 through a(5) = 12 compositions:
  (1)  (2)   (3)    (4)     (5)
       (11)  (12)   (13)    (14)
             (21)   (22)    (23)
             (111)  (31)    (32)
                    (112)   (41)
                    (121)   (113)
                    (1111)  (131)
                            (212)
                            (221)
                            (1112)
                            (1121)
                            (11111)
For example, starting with the composition y = (1,6,2,2,1,1,1,1) and repeatedly taking run-lengths and reversing gives (1,6,2,2,1,1,1,1) -> (4,2,1,1) -> (2,1,1) -> (2,1) -> (1,1) -> (2). All of these have weakly increasing run-lengths and the last is a singleton, so y is counted under a(15).
		

Crossrefs

The case of partitions is A317256.
The recursive (rather than alternating) version is A332274.
The total (rather than alternating) version is (also) A332274.
The strong version is this same sequence.
The case of reversed partitions is A332339.
The normal version is A332340(n) + 1 for n > 1.

Programs

  • Mathematica
    tniQ[q_]:=Or[q=={},q=={1},And[LessEqual@@Length/@Split[q],tniQ[Reverse[Length/@Split[q]]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],tniQ]],{n,0,10}]
Showing 1-10 of 15 results. Next