cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A316496 Number of totally strong integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 8, 12, 13, 18, 20, 27, 27, 38, 41, 52, 56, 73, 77, 99, 105, 129, 145, 176, 186, 229, 253, 300, 329, 395, 427, 504, 555, 648, 716, 836, 905, 1065, 1173, 1340, 1475, 1703, 1860, 2140, 2349, 2671, 2944, 3365, 3666, 4167, 4582, 5160, 5668
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2018

Keywords

Comments

An integer partition is totally strong if either it is empty, equal to (1), or its run-lengths are weakly decreasing (strong) and are themselves a totally strong partition.

Examples

			The a(1) = 1 through a(8) = 12 totally strong partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (11111)  (222)     (331)      (71)
                                     (321)     (421)      (332)
                                     (2211)    (2221)     (431)
                                     (111111)  (1111111)  (521)
                                                          (2222)
                                                          (3311)
                                                          (22211)
                                                          (11111111)
For example, the partition (3,3,2,1) has run-lengths (2,1,1), which are weakly decreasing, but they have run-lengths (1,2), which are not weakly decreasing, so (3,3,2,1) is not totally strong.
		

Crossrefs

The Heinz numbers of these partitions are A316529.
The version for compositions is A332274.
The dual version is A332275.
The version for reversed partitions is (also) A332275.
The narrowly normal version is A332297.
The alternating version is A332339 (see also A317256).
Partitions with weakly decreasing run-lengths are A100882.

Programs

  • Mathematica
    totincQ[q_]:=Or[q=={},q=={1},And[GreaterEqual@@Length/@Split[q],totincQ[Length/@Split[q]]]];
    Table[Length[Select[IntegerPartitions[n],totincQ]],{n,0,30}]

Extensions

Updated with corrected terminology by Gus Wiseman, Mar 07 2020

A332277 Number of widely totally normal integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 2, 4, 4, 6, 3, 5, 7, 6, 8, 12, 9, 12, 13, 11, 12, 18, 17, 12, 32, 19, 25, 33, 30, 28, 44, 33, 43, 57, 51, 60, 83, 70, 83, 103, 96, 97, 125, 117, 134, 157, 157, 171, 226, 215, 238, 278, 302, 312, 359, 357, 396, 450, 444, 477, 580
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2020

Keywords

Comments

A sequence is widely totally normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has widely totally normal run-lengths.
Also the number of widely totally normal reversed integer partitions of n.

Examples

			The a(n) partitions for n = 1, 4, 10, 11, 16, 18:
  1  211   4321        33221        443221            543321
     1111  33211       322211       4432111           4333221
           322111      332111       1111111111111111  4432221
           1111111111  11111111111                    4433211
                                                      43322211
                                                      44322111
                                                      111111111111111111
		

Crossrefs

Normal partitions are A000009.
Taking multiplicities instead of run-lengths gives A317245.
Constantly recursively normal partitions are A332272.
The Heinz numbers of these partitions are A332276.
The case of all compositions (not just partitions) is A332279.
The co-strong version is A332278.
The recursive version is A332295.
The narrow version is a(n) + 1 for n > 1.

Programs

  • Mathematica
    recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],recnQ[Length/@Split[ptn]]]];
    Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]

Extensions

a(61)-a(66) from Jinyuan Wang, Jun 26 2020

A332297 Number of narrowly totally strongly normal integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2020

Keywords

Comments

A partition is narrowly totally strongly normal if either it is empty, a singleton (narrow), or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) that are themselves a narrowly totally strongly normal partition.

Examples

			The a(1) = 1, a(2) = 2, a(3) = 3, and a(55) = 4 partitions:
  (1)  (2)    (3)      (55)
       (1,1)  (2,1)    (10,9,8,7,6,5,4,3,2,1)
              (1,1,1)  (5,5,5,5,5,4,4,4,4,3,3,3,2,2,1)
                       (1)^55
For example, starting with the partition (3,3,2,2,1) and repeatedly taking run-lengths gives (3,3,2,2,1) -> (2,2,1) -> (2,1) -> (1,1) -> (2). The first four are normal and have weakly decreasing run-lengths, and the last is a singleton, so (3,3,2,2,1) is counted under a(11).
		

Crossrefs

Normal partitions are A000009.
The non-totally normal version is A316496.
The widely alternating version is A332292.
The non-strong case of compositions is A332296.
The case of compositions is A332336.
The wide version is a(n) - 1 for n > 1.

Programs

  • Mathematica
    tinQ[q_]:=Or[q=={},Length[q]==1,And[Union[q]==Range[Max[q]],GreaterEqual@@Length/@Split[q],tinQ[Length/@Split[q]]]];
    Table[Length[Select[IntegerPartitions[n],tinQ]],{n,0,30}]

Extensions

a(60)-a(80) from Jinyuan Wang, Jun 26 2020

A332337 Number of widely totally strongly normal compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 9, 9, 12, 23, 54, 77, 116, 205, 352, 697, 1174, 2013, 3538, 6209, 10830
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2020

Keywords

Comments

A sequence is widely totally strongly normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) that are themselves a widely totally strongly normal sequence.

Examples

			The a(1) = 1 through a(8) = 12 compositions:
  (1)  (11)  (12)   (112)   (212)    (123)     (1213)     (1232)
             (21)   (121)   (221)    (132)     (1231)     (2123)
             (111)  (1111)  (11111)  (213)     (1312)     (2132)
                                     (231)     (1321)     (2312)
                                     (312)     (2131)     (2321)
                                     (321)     (3121)     (3212)
                                     (1212)    (11221)    (12131)
                                     (2121)    (12121)    (13121)
                                     (111111)  (1111111)  (21212)
                                                          (22112)
                                                          (111221)
                                                          (11111111)
For example, starting with (22112) and repeated taking run-lengths gives (22112) -> (221) -> (21) -> (11). These are all normal with weakly decreasing run-lengths, and the last is all 1's, so (22112) is counted under a(8).
		

Crossrefs

Normal compositions are A107429.
The case of partitions is A332278.
The non-strong version is A332279.
Heinz numbers in the case of partitions are A332291.
The narrow version is A332336.
The alternating version is A332340.
The co-strong version is this same sequence.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Length/@Split[ptn]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],totnQ]],{n,0,10}]

Formula

For n > 1, a(n) = A332336(n) - 1.

A332275 Number of totally co-strong integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 12, 17, 22, 30, 32, 49, 53, 70, 82, 108, 119, 156, 171, 219, 250, 305, 336, 424, 468, 562, 637, 754, 835, 1011, 1108, 1304, 1461, 1692, 1873, 2212, 2417, 2787, 3109, 3562, 3911, 4536, 4947, 5653, 6265, 7076, 7758, 8883, 9669, 10945, 12040
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2020

Keywords

Comments

A sequence is totally co-strong if it is empty, equal to (1), or its run-lengths are weakly increasing (co-strong) and are themselves a totally co-strong sequence.
Also the number of totally strong reversed integer partitions of n.

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (311)    (51)      (61)
                    (1111)  (2111)   (222)     (322)
                            (11111)  (321)     (421)
                                     (411)     (511)
                                     (2211)    (4111)
                                     (3111)    (22111)
                                     (21111)   (31111)
                                     (111111)  (211111)
                                               (1111111)
For example, the partition y = (5,4,4,4,3,3,3,2,2,2,2,2,2,1,1,1,1,1,1) has run-lengths (1,3,3,6,6), with run-lengths (1,2,2), with run-lengths (1,2), with run-lengths (1,1), with run-lengths (2), with run-lengths (1). All of these having weakly increasing run-lengths, and the last is (1), so y is counted under a(44).
		

Crossrefs

The strong version is A316496.
The version for reversed partitions is (also) A316496.
The alternating version is A317256.
The generalization to compositions is A332274.

Programs

  • Mathematica
    totincQ[q_]:=Or[q=={},q=={1},And[LessEqual@@Length/@Split[q],totincQ[Length/@Split[q]]]];
    Table[Length[Select[IntegerPartitions[n],totincQ]],{n,0,30}]

A332296 Number of narrowly totally normal compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 5, 7, 13, 23, 30, 63, 120, 209, 369, 651, 1198, 2174, 3896, 7023, 12699, 22941, 41565
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2020

Keywords

Comments

A sequence is narrowly totally normal if either it is empty, a singleton (narrow), or it covers an initial interval of positive integers (normal) with narrowly totally normal run-lengths.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(0) = 1 through a(6) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (12)   (112)   (122)    (123)
                 (21)   (121)   (212)    (132)
                 (111)  (211)   (221)    (213)
                        (1111)  (1121)   (231)
                                (1211)   (312)
                                (11111)  (321)
                                         (1212)
                                         (1221)
                                         (2112)
                                         (2121)
                                         (11211)
                                         (111111)
For example, starting with the composition (1,1,2,3,1,1) and repeatedly taking run-lengths gives (1,1,2,3,1,1) -> (2,1,1,2) -> (1,2,1) -> (1,1,1) -> (3). The first four are normal and the last is a singleton, so (1,1,2,3,1,1) is counted under a(9).
		

Crossrefs

Normal compositions are A107429.
The wide version is A332279.
The wide recursive version (for partitions) is A332295.
The alternating version is A332296 (this sequence).
The strong version is A332336.
The co-strong version is (also) A332336.

Programs

  • Mathematica
    tinQ[q_]:=Or[Length[q]<=1,And[Union[q]==Range[Max[q]],tinQ[Length/@Split[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],tinQ]],{n,0,10}]

Formula

For n > 1, a(n) = A332279(n) + 1.

A332279 Number of widely totally normal compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 12, 22, 29, 62, 119, 208, 368, 650, 1197, 2173, 3895, 7022, 12698, 22940, 41564
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2020

Keywords

Comments

A sequence is widely totally normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has widely totally normal run-lengths.
A composition of n is a finite sequence of positive integers with sum n.

Examples

			The a(1) = 1 through a(7) = 22 compositions:
  (1)  (11)  (12)   (112)   (122)    (123)     (1123)
             (21)   (121)   (212)    (132)     (1132)
             (111)  (211)   (221)    (213)     (1213)
                    (1111)  (1121)   (231)     (1231)
                            (1211)   (312)     (1312)
                            (11111)  (321)     (1321)
                                     (1212)    (2113)
                                     (1221)    (2122)
                                     (2112)    (2131)
                                     (2121)    (2212)
                                     (11211)   (2311)
                                     (111111)  (3112)
                                               (3121)
                                               (3211)
                                               (11221)
                                               (12112)
                                               (12121)
                                               (12211)
                                               (21121)
                                               (111211)
                                               (112111)
                                               (1111111)
For example, starting with y = (3,2,1,1,2,2,2,1,2,1,1,1,1) and repeatedly taking run-lengths gives y -> (1,1,2,3,1,1,4) -> (2,1,1,2,1) -> (1,2,1,1) -> (1,1,2) -> (2,1) -> (1,1). These are all normal and the last is all 1's, so y is counted under a(20).
		

Crossrefs

Normal compositions are A107429.
Constantly recursively normal partitions are A332272.
The case of partitions is A332277.
The case of reversed partitions is (also) A332277.
The narrow version is A332296.
The strong version is A332337.
The co-strong version is (also) A332337.

Programs

  • Mathematica
    recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],recnQ[Length/@Split[ptn]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],recnQ]],{n,0,10}]

Formula

For n > 1, a(n) = A332296(n) - 1.

A332274 Number of totally strong compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 22, 33, 56, 93, 162, 264, 454, 765, 1307, 2237, 3849, 6611, 11472, 19831, 34446, 59865, 104293, 181561, 316924
Offset: 0

Views

Author

Gus Wiseman, Feb 11 2020

Keywords

Comments

A sequence is totally strong if either it is empty, equal to (1), or its run-lengths are weakly decreasing (strong) and are themselves a totally strong sequence.
A composition of n is a finite sequence of positive integers with sum n.
Also the number of totally co-strong compositions of n.

Examples

			The a(1) = 1 through a(5) = 11 compositions:
  (1)  (2)   (3)    (4)     (5)
       (11)  (12)   (13)    (14)
             (21)   (22)    (23)
             (111)  (31)    (32)
                    (121)   (41)
                    (211)   (122)
                    (1111)  (131)
                            (212)
                            (311)
                            (2111)
                            (11111)
		

Crossrefs

The case of partitions is A316496.
The co-strong case is A332274 (this sequence).
The case of reversed partitions is A332275.
The alternating version is A332338.

Programs

  • Mathematica
    tni[q_]:=Or[q=={},q=={1},And[GreaterEqual@@Length/@Split[q],tni[Length/@Split[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],tni]],{n,0,15}]
Showing 1-8 of 8 results.