cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A317491 Number of fully normal integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 6, 10, 12, 17, 21, 30, 33, 46, 50, 68, 77, 100, 112, 146, 167, 201, 234, 290, 326, 400, 456, 545, 622, 744, 845, 1004, 1153, 1351, 1551, 1819, 2103, 2434, 2808, 3248, 3735, 4304, 4943, 5661, 6506, 7446, 8499, 9657, 11070, 12505, 14325, 16183
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2018

Keywords

Comments

An integer partition is fully normal if either it is of the form (1,1,...,1) or its multiplicities span an initial interval of positive integers and, sorted in weakly decreasing order, are themselves fully normal.

Examples

			The a(6) = 6 fully normal partitions are (6), (51), (42), (411), (321), (111111). Missing from this list are (33), (3111), (222), (2211), (21111).
		

Crossrefs

Programs

  • Mathematica
    fulnrmQ[ptn_]:=With[{qtn=Sort[Length/@Split[ptn],Greater]},Or[ptn=={}||Union[ptn]=={1},And[Union[qtn]==Range[Max[qtn]],fulnrmQ[qtn]]]];
    Table[Length[Select[IntegerPartitions[n],fulnrmQ]],{n,0,30}]

Formula

a(n) = A317245(n) iff n is 1 or a prime number.

A316496 Number of totally strong integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 8, 12, 13, 18, 20, 27, 27, 38, 41, 52, 56, 73, 77, 99, 105, 129, 145, 176, 186, 229, 253, 300, 329, 395, 427, 504, 555, 648, 716, 836, 905, 1065, 1173, 1340, 1475, 1703, 1860, 2140, 2349, 2671, 2944, 3365, 3666, 4167, 4582, 5160, 5668
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2018

Keywords

Comments

An integer partition is totally strong if either it is empty, equal to (1), or its run-lengths are weakly decreasing (strong) and are themselves a totally strong partition.

Examples

			The a(1) = 1 through a(8) = 12 totally strong partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (11111)  (222)     (331)      (71)
                                     (321)     (421)      (332)
                                     (2211)    (2221)     (431)
                                     (111111)  (1111111)  (521)
                                                          (2222)
                                                          (3311)
                                                          (22211)
                                                          (11111111)
For example, the partition (3,3,2,1) has run-lengths (2,1,1), which are weakly decreasing, but they have run-lengths (1,2), which are not weakly decreasing, so (3,3,2,1) is not totally strong.
		

Crossrefs

The Heinz numbers of these partitions are A316529.
The version for compositions is A332274.
The dual version is A332275.
The version for reversed partitions is (also) A332275.
The narrowly normal version is A332297.
The alternating version is A332339 (see also A317256).
Partitions with weakly decreasing run-lengths are A100882.

Programs

  • Mathematica
    totincQ[q_]:=Or[q=={},q=={1},And[GreaterEqual@@Length/@Split[q],totincQ[Length/@Split[q]]]];
    Table[Length[Select[IntegerPartitions[n],totincQ]],{n,0,30}]

Extensions

Updated with corrected terminology by Gus Wiseman, Mar 07 2020

A317246 Heinz numbers of supernormal integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 30, 32, 60, 64, 90, 128, 150, 180, 210, 256, 300, 360, 450, 512, 540, 600, 1024, 1350, 1500, 2048, 2250, 2310, 2520, 3780, 4096, 4200, 5880, 8192, 9450, 10500, 12600, 13230, 15750, 16384, 17640, 18900, 20580, 26460, 29400, 30030
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2018

Keywords

Comments

An integer partition is supernormal if either (1) it is of the form 1^n for some n >= 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a supernormal integer partition.

Examples

			Sequence of supernormal integer partitions begins: (), (1), (11), (21), (111), (211), (1111), (221), (321), (11111), (3211), (111111), (3221), (1111111), (3321), (32211), (4321).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    supnrm[q_]:=Or[q=={}||Union[q]=={1},And[Union[q]==Range[Max[q]],supnrm[Sort[Length/@Split[q],Greater]]]];
    Select[Range[10000],supnrm[primeMS[#]]&]

A317256 Number of alternately co-strong integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 13, 19, 25, 35, 42, 61, 74, 98, 122, 161, 194, 254, 304, 388, 472, 589, 700, 878, 1044, 1278, 1525, 1851, 2182, 2651, 3113, 3735, 4389, 5231, 6106, 7278, 8464, 9995, 11631, 13680, 15831, 18602, 21463, 25068, 28927, 33654, 38671, 44942, 51514
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2018

Keywords

Comments

A sequence is alternately co-strong if either it is empty, equal to (1), or its run-lengths are weakly increasing (co-strong) and, when reversed, are themselves an alternately co-strong sequence.
Also the number of alternately strong reversed integer partitions of n.

Examples

			The a(1) = 1 through a(7) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (311)    (51)      (61)
                    (1111)  (2111)   (222)     (322)
                            (11111)  (321)     (421)
                                     (411)     (511)
                                     (2211)    (3211)
                                     (3111)    (4111)
                                     (21111)   (22111)
                                     (111111)  (31111)
                                               (211111)
                                               (1111111)
For example, starting with the partition y = (3,2,2,1,1) and repeatedly taking run-lengths and reversing gives (3,2,2,1,1) -> (2,2,1) -> (1,2), which is not weakly decreasing, so y is not  alternately co-strong. On the other hand, we have (3,3,2,2,1,1,1) -> (3,2,2) -> (2,1) -> (1,1) -> (2) -> (1), so (3,3,2,2,1,1,1) is counted under a(13).
		

Crossrefs

The Heinz numbers of these partitions are given by A317257.
The total (instead of alternating) version is A332275.
Dominates A332289 (the normal version).
The generalization to compositions is A332338.
The dual version is A332339.
The case of reversed partitions is (also) A332339.

Programs

  • Mathematica
    tniQ[q_]:=Or[q=={},q=={1},And[LessEqual@@Length/@Split[q],tniQ[Reverse[Length/@Split[q]]]]];
    Table[Length[Select[IntegerPartitions[n],tniQ]],{n,0,30}]

Extensions

Updated with corrected terminology by Gus Wiseman, Mar 08 2020

A332292 Number of widely alternately strongly normal integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2020

Keywords

Comments

An integer partition is widely alternately strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) which, if reversed, are themselves a widely alternately strongly normal partition.
Also the number of widely alternately co-strongly normal reversed integer partitions of n.

Examples

			The a(1) = 1, a(3) = 2, and a(21) = 3 partitions:
  (1)  (21)   (654321)
       (111)  (4443321)
              (111111111111111111111)
For example, starting with the partition y = (4,4,4,3,3,2,1) and repeatedly taking run-lengths and reversing gives (4,4,4,3,3,2,1) -> (1,1,2,3) -> (1,1,2) -> (1,2) -> (1,1). All of these are normal with weakly decreasing run-lengths, and the last is all 1's, so y is counted under a(21).
		

Crossrefs

Normal partitions are A000009.
The non-strong version is A332277.
The co-strong version is A332289.
The case of reversed partitions is (also) A332289.
The case of compositions is A332340.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],GreaterEqual@@Length/@Split[ptn],totnQ[Reverse[Length/@Split[ptn]]]]];
    Table[Length[Select[IntegerPartitions[n],totnQ]],{n,0,30}]

Extensions

a(71)-a(77) from Jinyuan Wang, Jun 26 2020

A332340 Number of widely alternately co-strongly normal compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 9, 11, 13, 23, 53, 78, 120, 207, 357, 707, 1183, 2030, 3558, 6229, 10868
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2020

Keywords

Comments

An integer partition is widely alternately co-strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) with weakly increasing run-length (co-strong) which, if reversed, are themselves a widely alternately co-strongly normal partition.

Examples

			The a(1) = 1 through a(8) = 13 compositions:
  (1)  (11)  (12)   (121)   (122)    (123)     (1213)     (1232)
             (21)   (211)   (212)    (132)     (1231)     (1322)
             (111)  (1111)  (1211)   (213)     (1312)     (2123)
                            (11111)  (231)     (1321)     (2132)
                                     (312)     (2122)     (2312)
                                     (321)     (2131)     (2321)
                                     (1212)    (2311)     (3122)
                                     (2121)    (3121)     (3212)
                                     (111111)  (3211)     (12131)
                                               (12121)    (13121)
                                               (1111111)  (21212)
                                                          (122111)
                                                          (11111111)
For example, starting with the composition y = (122111) and repeatedly taking run-lengths and reversing gives (122111) -> (321) -> (111). All of these are normal with weakly increasing run-lengths and the last is all 1's, so y is counted under a(8).
		

Crossrefs

Normal compositions are A107429.
Compositions with normal run-lengths are A329766.
The Heinz numbers of the case of partitions are A332290.
The case of partitions is A332289.
The total (instead of alternating) version is A332337.
Not requiring normality gives A332338.
The strong version is this same sequence.
The narrow version is a(n) + 1 for n > 1.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Reverse[Length/@Split[ptn]]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],totnQ]],{n,0,10}]

A319149 Number of superperiodic integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 6, 1, 3, 3, 5, 1, 7, 1, 7, 3, 3, 1, 13, 2, 3, 4, 9, 1, 13, 1, 11, 3, 3, 3, 23, 1, 3, 3, 20, 1, 17, 1, 16, 9, 3, 1, 38, 2, 9, 3, 23, 1, 25, 3, 36, 3, 3, 1, 71, 1, 3, 11, 49, 3, 31, 1, 52, 3, 19
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

An integer partition is superperiodic if either it consists of a single part equal to 1 or its parts have a common divisor > 1 and its multiset of multiplicities is itself superperiodic. For example, (8,8,6,6,4,4,4,4,2,2,2,2) has multiplicities (4,4,2,2) with multiplicities (2,2) with multiplicities (2) with multiplicities (1). The first four of these partitions are periodic and the last is (1), so (8,8,6,6,4,4,4,4,2,2,2,2) is superperiodic.

Examples

			The a(24) = 11 superperiodic partitions:
  (24)
  (12,12)
  (8,8,8)
  (9,9,3,3)
  (8,8,4,4)
  (6,6,6,6)
  (10,10,2,2)
  (6,6,6,2,2,2)
  (6,6,4,4,2,2)
  (4,4,4,4,4,4)
  (4,4,4,4,2,2,2,2)
  (3,3,3,3,3,3,3,3)
  (2,2,2,2,2,2,2,2,2,2,2,2)
		

Crossrefs

Programs

  • Mathematica
    wotperQ[m_]:=Or[m=={1},And[GCD@@m>1,wotperQ[Sort[Length/@Split[Sort[m]]]]]];
    Table[Length[Select[IntegerPartitions[n],wotperQ]],{n,30}]

A332277 Number of widely totally normal integer partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4, 2, 4, 4, 6, 3, 5, 7, 6, 8, 12, 9, 12, 13, 11, 12, 18, 17, 12, 32, 19, 25, 33, 30, 28, 44, 33, 43, 57, 51, 60, 83, 70, 83, 103, 96, 97, 125, 117, 134, 157, 157, 171, 226, 215, 238, 278, 302, 312, 359, 357, 396, 450, 444, 477, 580
Offset: 0

Views

Author

Gus Wiseman, Feb 12 2020

Keywords

Comments

A sequence is widely totally normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has widely totally normal run-lengths.
Also the number of widely totally normal reversed integer partitions of n.

Examples

			The a(n) partitions for n = 1, 4, 10, 11, 16, 18:
  1  211   4321        33221        443221            543321
     1111  33211       322211       4432111           4333221
           322111      332111       1111111111111111  4432221
           1111111111  11111111111                    4433211
                                                      43322211
                                                      44322111
                                                      111111111111111111
		

Crossrefs

Normal partitions are A000009.
Taking multiplicities instead of run-lengths gives A317245.
Constantly recursively normal partitions are A332272.
The Heinz numbers of these partitions are A332276.
The case of all compositions (not just partitions) is A332279.
The co-strong version is A332278.
The recursive version is A332295.
The narrow version is a(n) + 1 for n > 1.

Programs

  • Mathematica
    recnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],recnQ[Length/@Split[ptn]]]];
    Table[Length[Select[IntegerPartitions[n],recnQ]],{n,0,30}]

Extensions

a(61)-a(66) from Jinyuan Wang, Jun 26 2020

A332297 Number of narrowly totally strongly normal integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 2, 3, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2020

Keywords

Comments

A partition is narrowly totally strongly normal if either it is empty, a singleton (narrow), or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) that are themselves a narrowly totally strongly normal partition.

Examples

			The a(1) = 1, a(2) = 2, a(3) = 3, and a(55) = 4 partitions:
  (1)  (2)    (3)      (55)
       (1,1)  (2,1)    (10,9,8,7,6,5,4,3,2,1)
              (1,1,1)  (5,5,5,5,5,4,4,4,4,3,3,3,2,2,1)
                       (1)^55
For example, starting with the partition (3,3,2,2,1) and repeatedly taking run-lengths gives (3,3,2,2,1) -> (2,2,1) -> (2,1) -> (1,1) -> (2). The first four are normal and have weakly decreasing run-lengths, and the last is a singleton, so (3,3,2,2,1) is counted under a(11).
		

Crossrefs

Normal partitions are A000009.
The non-totally normal version is A316496.
The widely alternating version is A332292.
The non-strong case of compositions is A332296.
The case of compositions is A332336.
The wide version is a(n) - 1 for n > 1.

Programs

  • Mathematica
    tinQ[q_]:=Or[q=={},Length[q]==1,And[Union[q]==Range[Max[q]],GreaterEqual@@Length/@Split[q],tinQ[Length/@Split[q]]]];
    Table[Length[Select[IntegerPartitions[n],tinQ]],{n,0,30}]

Extensions

a(60)-a(80) from Jinyuan Wang, Jun 26 2020

A332337 Number of widely totally strongly normal compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 9, 9, 12, 23, 54, 77, 116, 205, 352, 697, 1174, 2013, 3538, 6209, 10830
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2020

Keywords

Comments

A sequence is widely totally strongly normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) that are themselves a widely totally strongly normal sequence.

Examples

			The a(1) = 1 through a(8) = 12 compositions:
  (1)  (11)  (12)   (112)   (212)    (123)     (1213)     (1232)
             (21)   (121)   (221)    (132)     (1231)     (2123)
             (111)  (1111)  (11111)  (213)     (1312)     (2132)
                                     (231)     (1321)     (2312)
                                     (312)     (2131)     (2321)
                                     (321)     (3121)     (3212)
                                     (1212)    (11221)    (12131)
                                     (2121)    (12121)    (13121)
                                     (111111)  (1111111)  (21212)
                                                          (22112)
                                                          (111221)
                                                          (11111111)
For example, starting with (22112) and repeated taking run-lengths gives (22112) -> (221) -> (21) -> (11). These are all normal with weakly decreasing run-lengths, and the last is all 1's, so (22112) is counted under a(8).
		

Crossrefs

Normal compositions are A107429.
The case of partitions is A332278.
The non-strong version is A332279.
Heinz numbers in the case of partitions are A332291.
The narrow version is A332336.
The alternating version is A332340.
The co-strong version is this same sequence.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Length/@Split[ptn]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],totnQ]],{n,0,10}]

Formula

For n > 1, a(n) = A332336(n) - 1.
Showing 1-10 of 27 results. Next