cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A351592 Number of Look-and-Say partitions (A239455) of n without distinct multiplicities, i.e., those that are not Wilf partitions (A098859).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 1, 0, 5, 2, 8, 9, 8, 6, 21, 14, 20, 26, 31, 24, 53, 35, 60, 68, 78, 76, 140, 115, 163, 183, 232, 218, 343, 301, 433, 432, 565, 542, 774, 728, 958, 977, 1251, 1220, 1612, 1561, 2053, 2090, 2618, 2609, 3326, 3378
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2022

Keywords

Comments

A partition is Look-and-Say iff it has a permutation with all distinct run-lengths. For example, the partition y = (2,2,2,1,1,1) has the permutation (2,2,1,1,1,2), with run-lengths (2,3,1), which are distinct, so y is counted under A239455(9).
A partition is Wilf iff it has distinct multiplicities of parts. For example, (2,2,2,1,1,1) has multiplicities (3,3), so is not counted under A098859(9).
The Heinz numbers of these partitions are given by A351294 \ A130091.
Is a(17) = 0 the last zero of the sequence?

Examples

			The a(9) = 1 through a(18) = 5 partitions are (empty columns not shown):
  n=9:      n=12:       n=15:         n=16:       n=18:
  --------------------------------------------------------------
  (222111)  (333111)    (333222)      (33331111)  (444222)
            (22221111)  (444111)                  (555111)
                        (2222211111)              (3322221111)
                                                  (32222211111)
                                                  (222222111111)
		

Crossrefs

Wilf partitions are counted by A098859, ranked by A130091.
Look-and-Say partitions are counted by A239455, ranked by A351294.
Non-Wilf partitions are counted by A336866, ranked by A130092.
Non-Look-and-Say partitions are counted by A351293, ranked by A351295.
A000569 = number of graphical partitions, complement A339617.
A032020 = number of binary expansions with all distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A225485/A325280 = frequency depth, ranked by A182850/A323014.
A329738 = compositions with all equal run-lengths.
A329739 = compositions with all distinct run-lengths
A351013 = compositions with all distinct runs.
A351017 = binary words with all distinct run-lengths, for all runs A351016.
A351292 = patterns with all distinct run-lengths, for all runs A351200.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Length/@Split[#]&&Select[Permutations[#], UnsameQ@@Length/@Split[#]&]!={}&]],{n,0,15}]

Formula

a(n) = A239455(n) - A098859(n). Here we assume A239455(0) = 1.

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A320810 Number of non-isomorphic multiset partitions of weight n whose part-sizes have a common divisor > 1.

Original entry on oeis.org

0, 2, 3, 12, 7, 84, 15, 410, 354, 3073, 56, 28300, 101, 210036, 126839, 2070047, 297, 25295952, 490, 269662769, 89071291, 3449056162, 1255, 51132696310, 400625539, 713071048480, 145126661415, 11351097702297, 4565, 199926713003444, 6842, 3460838122540969
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which the column sums are not relatively prime.
Also the number of non-isomorphic multiset partitions of weight n in which the multiset union of the parts is periodic, where a multiset is periodic if its multiplicities have a common divisor > 1.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 7 multiset partitions whose part-sizes have a common divisor:
  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}
  {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}
           {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}
                      {{1,2,3,3}}    {{1,2,2,3,3}}
                      {{1,2,3,4}}    {{1,2,3,3,3}}
                      {{1,1},{1,1}}  {{1,2,3,4,4}}
                      {{1,1},{2,2}}  {{1,2,3,4,5}}
                      {{1,2},{1,2}}
                      {{1,2},{2,2}}
                      {{1,2},{3,3}}
                      {{1,2},{3,4}}
                      {{1,3},{2,3}}
Non-isomorphic representatives of the a(2) = 1 through a(5) = 7 multiset partitions with periodic multiset union:
  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
  {{1},{1}}  {{1},{1,1}}    {{1,1,2,2}}        {{1},{1,1,1,1}}
             {{1},{1},{1}}  {{1},{1,1,1}}      {{1,1},{1,1,1}}
                            {{1,1},{1,1}}      {{1},{1},{1,1,1}}
                            {{1},{1,2,2}}      {{1},{1,1},{1,1}}
                            {{1,1},{2,2}}      {{1},{1},{1},{1,1}}
                            {{1,2},{1,2}}      {{1},{1},{1},{1},{1}}
                            {{1},{1},{1,1}}
                            {{1},{1},{2,2}}
                            {{1},{2},{1,2}}
                            {{1},{1},{1},{1}}
                            {{1},{1},{2},{2}}
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n));Vec(OgfSeries(sCartProd(sExp(A), -sum(d=2, n, moebius(d) * (-1 + sExp(O(x*x^n) + sum(i=1, n\d, polcoef(A,i*d)*x^(i*d)))) ))), -n)} \\ Andrew Howroyd, Jan 17 2023

Formula

a(n) = A007716(n) - A321283(n). - Andrew Howroyd, Jan 17 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 17 2023

A319162 Number of periodic integer partitions of n whose multiplicities are aperiodic, meaning the multiplicities of these multiplicities are relatively prime.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 6, 1, 9, 1, 12, 6, 16, 1, 27, 1, 33, 12, 46, 1, 70, 5, 84, 22, 110, 1, 172, 1, 188, 46, 251, 15, 366, 1, 418, 84, 540, 1, 775, 1, 863, 162, 1095, 1, 1535, 11, 1750, 251, 2154, 1, 2963, 49, 3323, 418, 4106, 1, 5567
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Examples

			The a(12) = 9 partitions:
  (66),
  (444), (441111),
  (3333), (33111111),
  (222222), (222111111), (2211111111),
  (111111111111).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@Sort[Length/@Split[#]]>1,GCD@@Length/@Split[Sort[Length/@Split[#]]]==1]&]],{n,30}]

A319151 Heinz numbers of superperiodic integer partitions.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

First differs from A061345 at a(1) = 2 and next at a(98) = 441.
A number n is in the sequence iff n = 2 or the prime indices of n have a common divisor > 1 and the Heinz number of the multiset of prime multiplicities of n, namely A181819(n), is already in the sequence.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of partitions whose Heinz numbers belong to the sequence begins: (1), (2), (3), (4), (2,2), (5), (6), (7), (8), (9), (3,3), (2,2,2), (10), (11), (12), (13), (14), (15), (4,4), (16), (17), (18), (19), (20), (21), (22), (2,2,2,2).
		

Crossrefs

Programs

  • Mathematica
    supperQ[n_]:=Or[n==2,And[GCD@@PrimePi/@FactorInteger[n][[All,1]]>1,supperQ[Times@@Prime/@FactorInteger[n][[All,2]]]]];
    Select[Range[500],supperQ]

A319164 Number of integer partitions of n that are neither relatively prime nor aperiodic.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 5, 0, 2, 2, 5, 0, 6, 0, 9, 2, 2, 0, 17, 1, 2, 3, 17, 0, 18, 0, 22, 2, 2, 2, 48, 0, 2, 2, 48, 0, 34, 0, 58, 11, 2, 0, 111, 1, 14, 2, 103, 0, 65, 2, 141, 2, 2, 0, 264, 0, 2, 19, 231, 2, 116, 0, 299, 2, 42
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

A partition is aperiodic if its multiplicities are relatively prime.

Examples

			The a(24) = 17 integer partitions:
  (12,12),
  (8,8,8),
  (6,6,6,6), (8,8,4,4), (9,9,3,3), (10,10,2,2),
  (4,4,4,4,4,4), (6,6,3,3,3,3), (6,6,4,4,2,2), (6,6,6,2,2,2), (8,8,2,2,2,2),
  (3,3,3,3,3,3,3,3), (4,4,4,4,2,2,2,2), (6,6,2,2,2,2,2,2),
  (4,4,4,2,2,2,2,2,2),
  (4,4,2,2,2,2,2,2,2,2),
  (2,2,2,2,2,2,2,2,2,2,2,2).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@#>1,GCD@@Length/@Split[#]>1]&]],{n,30}]

A319160 Number of integer partitions of n whose multiplicities appear with relatively prime multiplicities.

Original entry on oeis.org

1, 2, 2, 4, 5, 7, 11, 16, 22, 31, 45, 58, 83, 108, 142, 188, 250, 315, 417, 528, 674, 861, 1094, 1363, 1724, 2152, 2670, 3311, 4105, 5021, 6193, 7561, 9216, 11219, 13614, 16419, 19886, 23920, 28733, 34438, 41272, 49184, 58746, 69823, 82948, 98380, 116567
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

From Gus Wiseman, Jul 11 2023: (Start)
A partition is aperiodic (A000837) if its multiplicities are relatively prime. This sequence counts partitions whose multiplicities are aperiodic.
For example:
- The multiplicities of (5,3) are (1,1), with multiplicities (2), with common divisor 2, so it is not counted under a(8).
- The multiplicities of (3,2,2,1) are (2,1,1), with multiplicities (2,1), which are relatively prime, so it is counted under a(8).
- The multiplicities of (3,3,1,1) are (2,2), with multiplicities (2), with common divisor 2, so it is not counted under a(8).
- The multiplicities of (4,4,4,3,3,3,2,1) are (3,3,1,1), with multiplicities (2,2), which have common divisor 2, so it is not counted under a(24).
(End)

Examples

			The a(8) = 16 partitions:
  (8),
  (44),
  (332), (422), (611),
  (2222), (3221), (4211), (5111),
  (22211), (32111), (41111),
  (221111), (311111),
  (2111111),
  (11111111).
Missing from this list are: (53), (62), (71), (431), (521), (3311).
		

Crossrefs

These partitions have ranks A319161.
For distinct instead of relatively prime multiplicities we have A325329.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], GCD@@Length/@Split[Sort[Length/@Split[#]]]==1&]],{n,30}]

A319810 Number of fully periodic integer partitions of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 5, 4, 6, 2, 11, 2, 8, 7, 11, 2, 17, 2, 18, 9, 15, 2, 32, 5, 22, 12, 34, 2, 54, 2, 49, 16, 51, 10, 94, 2, 77, 23, 112, 2, 152, 2, 148, 47, 165, 2, 258, 7, 247, 52, 286, 2, 400, 17, 402, 78, 439, 2, 657, 2, 594, 131, 711, 24
Offset: 1

Views

Author

Gus Wiseman, Sep 28 2018

Keywords

Comments

An integer partition is fully periodic iff either it is a singleton or it is a periodic partition (meaning its multiplicities have a common divisor > 1) with fully periodic multiplicities.

Examples

			The a(12) = 11 fully periodic integer partitions:
  (12)
  (6,6)
  (4,4,4)
  (5,5,1,1)
  (4,4,2,2)
  (3,3,3,3)
  (3,3,3,1,1,1)
  (3,3,2,2,1,1)
  (2,2,2,2,2,2)
  (2,2,2,2,1,1,1,1)
  (1,1,1,1,1,1,1,1,1,1,1,1)
Periodic partitions missing from this list are:
  (4,4,1,1,1,1)
  (3,3,1,1,1,1,1,1)
  (2,2,2,1,1,1,1,1,1)
  (2,2,1,1,1,1,1,1,1,1)
The first non-uniform fully periodic partition is (4,4,3,3,2,2,2,2,1,1,1,1).
The first periodic integer partition that is not fully periodic is (2,2,1,1,1,1).
		

Crossrefs

Programs

  • Mathematica
    totperQ[m_]:=Or[Length[m]==1,And[GCD@@Length/@Split[Sort[m]]>1,totperQ[Sort[Length/@Split[Sort[m]]]]]];
    Table[Length[Select[IntegerPartitions[n],totperQ]],{n,30}]

A108572 Number of partitions of n which, as multisets, are nontrivial repetitions of a multiset.

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 0, 4, 2, 7, 0, 13, 0, 15, 8, 21, 0, 37, 0, 44, 16, 56, 0, 93, 6, 101, 29, 137, 0, 217, 0, 230, 57, 297, 20, 450, 0, 490, 102, 643, 0, 918, 0, 1004, 202, 1255, 0, 1783, 14, 1992, 298, 2438, 0, 3364, 61, 3734, 491, 4565, 0, 6251, 0, 6842, 818
Offset: 1

Views

Author

Len Smiley, Jul 25 2005

Keywords

Comments

The singleton and the all-ones partitions are ignored, so that a(n)=0 if n is prime. If a partition is listed as m_1^am_2^bm_3^c..., then it is counted exactly when gcd(a,b,c,...)>1. These are equinumerous (conjugate) with those partitions for which gcd(m_1,m_2,...)>1 (less 1, the singleton), hence the formula.

Examples

			a(25) = 6: 1^(15)2^5 = 5{1, 1, 1, 2}, 1^52^(10) = 5{1, 2, 2}, 1^(10)3^5 = 5{3, 1, 1}, 2^53^5 = 5{3, 2}, 1^44^4 = 5{4, 1}, 5^5 = 5{5}.
Note that A000041(25)=P(25)=1958, only 6 of which satisfy the criterion.
		

Crossrefs

Programs

  • Maple
    with(combinat):PartMulti:=proc(n::nonnegint) local count,a,i,j,b,m,k,part_vec;
    bigcount:=0; if isprime(n) then return(bigcount) else ps:=partition(n); b:=nops(ps);
    for m from 2 to b-1 do p:=ps[m]; a:=nops(p); part_vec:=array(1..n);
    for k from 1 to n do part_vec[k]:=0 od;
    for i from 1 to a do j:=p[i]; part_vec[j]:=part_vec[j]+1 od;
    g:=0; for j from 1 to n do g:=igcd(g,part_vec[j]) od;
    if g>1 then bigcount:=bigcount+1 fi od; return(bigcount) end if end proc;
    seq(PartMulti(q),q=1..49);
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[Length[#]1]&]],{n,20}] (* Gus Wiseman, Dec 06 2018 *)

Formula

a(n) = A018783(n)-1, n>1. - Vladeta Jovovic, Jul 28 2005

Extensions

More terms from Gus Wiseman, Dec 06 2018

A319152 Nonprime Heinz numbers of superperiodic integer partitions.

Original entry on oeis.org

9, 25, 27, 49, 81, 121, 125, 169, 243, 289, 343, 361, 441, 529, 625, 729, 841, 961, 1331, 1369, 1521, 1681, 1849, 2187, 2197, 2209, 2401, 2809, 3125, 3249, 3481, 3721, 4225, 4489, 4913, 5041, 5329, 6241, 6561, 6859, 6889, 7569, 7921, 8281, 9261, 9409, 10201
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

A subsequence of A001597.
A number n is in the sequence iff n = 2 or the prime indices of n have a common divisor > 1 and the Heinz number of the multiset of prime multiplicities of n, namely A181819(n), is already in the sequence.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of partitions whose Heinz numbers belong to the sequence begins: (22), (33), (222), (44), (2222), (55), (333), (66), (22222), (77), (444), (88), (4422), (99), (3333), (222222).
		

Crossrefs

Programs

  • Mathematica
    supperQ[n_]:=Or[n==2,And[GCD@@PrimePi/@FactorInteger[n][[All,1]]>1,supperQ[Times@@Prime/@FactorInteger[n][[All,2]]]]];
    Select[Range[10000],And[!PrimeQ[#],supperQ[#]]&]

A319157 Smallest Heinz number of a superperiodic integer partition requiring n steps in the reduction to a multiset of size 1 obtained by repeatedly taking the multiset of multiplicities.

Original entry on oeis.org

2, 3, 9, 441, 11865091329, 284788749974468882877009302517495014698593896453070311184452244729
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is superperiodic if either it consists of a single part equal to 1 or its parts have a common divisor > 1 and its multiset of multiplicities is itself superperiodic. For example, (8,8,6,6,4,4,4,4,2,2,2,2) has multiplicities (4,4,2,2) with multiplicities (2,2) with multiplicities (2) with multiplicities (1). The first four of these partitions are periodic and the last is (1), so (8,8,6,6,4,4,4,4,2,2,2,2) is superperiodic.

Crossrefs

Programs

  • Mathematica
    Function[m,Times@@Prime/@m]/@NestList[Join@@Table[Table[2i,{Reverse[#][[i]]}],{i,Length[#]}]&,{1},4]
Showing 1-10 of 14 results. Next