A322335
Number of 2-edge-connected integer partitions of n.
Original entry on oeis.org
0, 0, 0, 1, 0, 3, 0, 4, 2, 7, 0, 13, 0, 15, 8, 21, 1, 37, 2, 45, 18, 58, 8, 95, 19, 109, 45, 150, 38, 232, 59, 268, 129, 357, 155, 523, 203, 633, 359, 852, 431, 1185, 609, 1464, 969
Offset: 1
The a(14) = 15 2-edge-connected integer partitions of 14:
(7,7) (6,4,4) (4,4,4,2) (4,4,2,2,2) (4,2,2,2,2,2) (2,2,2,2,2,2,2)
(8,6) (6,6,2) (6,4,2,2) (6,2,2,2,2)
(10,4) (8,4,2) (8,2,2,2)
(12,2) (10,2,2)
Cf.
A007718,
A013922,
A054921,
A095983,
A218970,
A275307,
A286518,
A304714,
A304716,
A322336,
A322337,
A322338.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]];
Table[Length[Select[IntegerPartitions[n],twoedQ[primeMS/@#]&]],{n,30}]
A327685
Nonprime numbers whose prime indices have a common divisor > 1.
Original entry on oeis.org
9, 21, 25, 27, 39, 49, 57, 63, 65, 81, 87, 91, 111, 115, 117, 121, 125, 129, 133, 147, 159, 169, 171, 183, 185, 189, 203, 213, 235, 237, 243, 247, 259, 261, 267, 273, 289, 299, 301, 303, 305, 319, 321, 325, 333, 339, 343, 351, 361, 365, 371, 377, 387, 393, 399
Offset: 1
The sequence of terms together with their prime indices begins:
9: {2,2}
21: {2,4}
25: {3,3}
27: {2,2,2}
39: {2,6}
49: {4,4}
57: {2,8}
63: {2,2,4}
65: {3,6}
81: {2,2,2,2}
87: {2,10}
91: {4,6}
111: {2,12}
115: {3,9}
117: {2,2,6}
121: {5,5}
125: {3,3,3}
129: {2,14}
133: {4,8}
147: {2,4,4}
A338552
Non-powers of primes whose prime indices have a common divisor > 1.
Original entry on oeis.org
21, 39, 57, 63, 65, 87, 91, 111, 115, 117, 129, 133, 147, 159, 171, 183, 185, 189, 203, 213, 235, 237, 247, 259, 261, 267, 273, 299, 301, 303, 305, 319, 321, 325, 333, 339, 351, 365, 371, 377, 387, 393, 399, 417, 427, 441, 445, 453, 477, 481, 489, 497, 507
Offset: 1
The sequence of terms together with their prime indices begins:
21: {2,4} 183: {2,18} 305: {3,18}
39: {2,6} 185: {3,12} 319: {5,10}
57: {2,8} 189: {2,2,2,4} 321: {2,28}
63: {2,2,4} 203: {4,10} 325: {3,3,6}
65: {3,6} 213: {2,20} 333: {2,2,12}
87: {2,10} 235: {3,15} 339: {2,30}
91: {4,6} 237: {2,22} 351: {2,2,2,6}
111: {2,12} 247: {6,8} 365: {3,21}
115: {3,9} 259: {4,12} 371: {4,16}
117: {2,2,6} 261: {2,2,10} 377: {6,10}
129: {2,14} 267: {2,24} 387: {2,2,14}
133: {4,8} 273: {2,4,6} 393: {2,32}
147: {2,4,4} 299: {6,9} 399: {2,4,8}
159: {2,16} 301: {4,14} 417: {2,34}
171: {2,2,8} 303: {2,26} 427: {4,18}
A327685 allows nonprime prime powers.
A338330 is the coprime instead of relatively prime version.
A338554 counts the partitions with these Heinz numbers.
A000740 counts relatively prime compositions.
A051424 counts pairwise coprime or singleton partitions.
A108572 counts nontrivial periodic partitions, with Heinz numbers
A001597.
A302696 gives the Heinz numbers of pairwise coprime partitions.
A327516 counts pairwise coprime partitions, with Heinz numbers
A302696.
Cf.
A000005,
A000837,
A007916,
A056239,
A112798,
A289508,
A302569,
A302796,
A318716,
A327658,
A328867,
A328677,
A338331,
A338553.
A338555
Numbers that are either a power of a prime or have relatively prime prime indices.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 72
Offset: 1
A327534 uses primes instead of prime powers.
A338553 counts the partitions with these Heinz numbers.
A000837 counts relatively prime partitions, with Heinz numbers
A289509.
A018783 counts partitions whose prime indices are not relatively prime, with Heinz numbers
A318978.
A051424 counts pairwise coprime or singleton partitions.
A327516 counts pairwise coprime partitions, with Heinz numbers
A302696.
Showing 1-4 of 4 results.
Comments