cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A047968 a(n) = Sum_{d|n} p(d), where p(d) = A000041 = number of partitions of d.

Original entry on oeis.org

1, 3, 4, 8, 8, 17, 16, 30, 34, 52, 57, 99, 102, 153, 187, 261, 298, 432, 491, 684, 811, 1061, 1256, 1696, 1966, 2540, 3044, 3876, 4566, 5846, 6843, 8610, 10203, 12610, 14906, 18491, 21638, 26508, 31290, 38044, 44584, 54133, 63262, 76241
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Inverse Moebius transform of A000041.
Row sums of triangle A137587. - Gary W. Adamson, Jan 27 2008
Row sums of triangle A168021. - Omar E. Pol, Nov 20 2009
Row sums of triangle A168017. Row sums of triangle A168018. - Omar E. Pol, Nov 25 2009
Sum of the partition numbers of the divisors of n. - Omar E. Pol, Feb 25 2014
Conjecture: for n > 6, a(n) is strictly increasing. - Franklin T. Adams-Watters, Apr 19 2014
Number of constant multiset partitions of multisets spanning an initial interval of positive integers with multiplicities an integer partition of n. - Gus Wiseman, Sep 16 2018

Examples

			For n = 10 the divisors of 10 are 1, 2, 5, 10, hence the partition numbers of the divisors of 10 are 1, 2, 7, 42, so a(10) = 1 + 2 + 7 + 42 = 52. - _Omar E. Pol_, Feb 26 2014
From _Gus Wiseman_, Sep 16 2018: (Start)
The a(6) = 17 constant multiset partitions:
  (111111)  (111)(111)    (11)(11)(11)  (1)(1)(1)(1)(1)(1)
  (111222)  (12)(12)(12)
  (111122)  (112)(112)
  (112233)  (123)(123)
  (111112)
  (111123)
  (111223)
  (111234)
  (112234)
  (112345)
  (123456)
(End)
		

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l) do c := c+numbpart(l[i]) od: RETURN(c): end: for j from 1 to 60 do printf(`%d, `, a(j)) od: # Zerinvary Lajos, Apr 14 2007
  • Mathematica
    a[n_] := Sum[ PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 44}] (* Jean-François Alcover, Oct 03 2013 *)

Formula

G.f.: Sum_{k>0} (-1+1/Product_{i>0} (1-z^(k*i))). - Vladeta Jovovic, Jun 22 2003
G.f.: sum(n>0,A000041(n)*x^n/(1-x^n)). - Mircea Merca, Feb 24 2014.
a(n) = A168111(n) + A000041(n). - Omar E. Pol, Feb 26 2014
a(n) = Sum_{y is a partition of n} A000005(GCD(y)). - Gus Wiseman, Sep 16 2018

A320810 Number of non-isomorphic multiset partitions of weight n whose part-sizes have a common divisor > 1.

Original entry on oeis.org

0, 2, 3, 12, 7, 84, 15, 410, 354, 3073, 56, 28300, 101, 210036, 126839, 2070047, 297, 25295952, 490, 269662769, 89071291, 3449056162, 1255, 51132696310, 400625539, 713071048480, 145126661415, 11351097702297, 4565, 199926713003444, 6842, 3460838122540969
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2018

Keywords

Comments

Also the number of nonnegative integer matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which the column sums are not relatively prime.
Also the number of non-isomorphic multiset partitions of weight n in which the multiset union of the parts is periodic, where a multiset is periodic if its multiplicities have a common divisor > 1.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 7 multiset partitions whose part-sizes have a common divisor:
  {{1,1}}  {{1,1,1}}  {{1,1,1,1}}    {{1,1,1,1,1}}
  {{1,2}}  {{1,2,2}}  {{1,1,2,2}}    {{1,1,2,2,2}}
           {{1,2,3}}  {{1,2,2,2}}    {{1,2,2,2,2}}
                      {{1,2,3,3}}    {{1,2,2,3,3}}
                      {{1,2,3,4}}    {{1,2,3,3,3}}
                      {{1,1},{1,1}}  {{1,2,3,4,4}}
                      {{1,1},{2,2}}  {{1,2,3,4,5}}
                      {{1,2},{1,2}}
                      {{1,2},{2,2}}
                      {{1,2},{3,3}}
                      {{1,2},{3,4}}
                      {{1,3},{2,3}}
Non-isomorphic representatives of the a(2) = 1 through a(5) = 7 multiset partitions with periodic multiset union:
  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}        {{1,1,1,1,1}}
  {{1},{1}}  {{1},{1,1}}    {{1,1,2,2}}        {{1},{1,1,1,1}}
             {{1},{1},{1}}  {{1},{1,1,1}}      {{1,1},{1,1,1}}
                            {{1,1},{1,1}}      {{1},{1},{1,1,1}}
                            {{1},{1,2,2}}      {{1},{1,1},{1,1}}
                            {{1,1},{2,2}}      {{1},{1},{1},{1,1}}
                            {{1,2},{1,2}}      {{1},{1},{1},{1},{1}}
                            {{1},{1},{1,1}}
                            {{1},{1},{2,2}}
                            {{1},{2},{1,2}}
                            {{1},{1},{1},{1}}
                            {{1},{1},{2},{2}}
		

Crossrefs

Programs

  • PARI
    \\ See links in A339645 for combinatorial species functions.
    seq(n)={my(A=symGroupSeries(n));Vec(OgfSeries(sCartProd(sExp(A), -sum(d=2, n, moebius(d) * (-1 + sExp(O(x*x^n) + sum(i=1, n\d, polcoef(A,i*d)*x^(i*d)))) ))), -n)} \\ Andrew Howroyd, Jan 17 2023

Formula

a(n) = A007716(n) - A321283(n). - Andrew Howroyd, Jan 17 2023

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 17 2023

A319164 Number of integer partitions of n that are neither relatively prime nor aperiodic.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 5, 0, 2, 2, 5, 0, 6, 0, 9, 2, 2, 0, 17, 1, 2, 3, 17, 0, 18, 0, 22, 2, 2, 2, 48, 0, 2, 2, 48, 0, 34, 0, 58, 11, 2, 0, 111, 1, 14, 2, 103, 0, 65, 2, 141, 2, 2, 0, 264, 0, 2, 19, 231, 2, 116, 0, 299, 2, 42
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

A partition is aperiodic if its multiplicities are relatively prime.

Examples

			The a(24) = 17 integer partitions:
  (12,12),
  (8,8,8),
  (6,6,6,6), (8,8,4,4), (9,9,3,3), (10,10,2,2),
  (4,4,4,4,4,4), (6,6,3,3,3,3), (6,6,4,4,2,2), (6,6,6,2,2,2), (8,8,2,2,2,2),
  (3,3,3,3,3,3,3,3), (4,4,4,4,2,2,2,2), (6,6,2,2,2,2,2,2),
  (4,4,4,2,2,2,2,2,2),
  (4,4,2,2,2,2,2,2,2,2),
  (2,2,2,2,2,2,2,2,2,2,2,2).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@#>1,GCD@@Length/@Split[#]>1]&]],{n,30}]

A319163 Perfect powers whose prime multiplicities appear with relatively prime multiplicities.

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 121, 125, 128, 144, 169, 243, 256, 289, 324, 343, 361, 400, 512, 529, 576, 625, 729, 784, 841, 961, 1024, 1331, 1369, 1600, 1681, 1728, 1849, 1936, 2025, 2048, 2187, 2197, 2209, 2304, 2401, 2500, 2704, 2809, 2916, 3125
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

Perfect powers n such that A181819(n) is not a perfect power (i.e. belongs to A007916).

Examples

			The sequence of integer partitions whose Heinz numbers are in the sequence begins: (11), (111), (22), (1111), (33), (222), (11111), (44), (111111), (2222), (55), (333), (1111111), (221111), (66), (22222), (11111111), (77), (222211), (444), (88), (331111), (111111111), (99), (22111111), (3333), (222222), (441111).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],And[GCD@@FactorInteger[#][[All,2]]>1,GCD@@Length/@Split[Sort[FactorInteger[#][[All,2]]]]==1]&]

A319160 Number of integer partitions of n whose multiplicities appear with relatively prime multiplicities.

Original entry on oeis.org

1, 2, 2, 4, 5, 7, 11, 16, 22, 31, 45, 58, 83, 108, 142, 188, 250, 315, 417, 528, 674, 861, 1094, 1363, 1724, 2152, 2670, 3311, 4105, 5021, 6193, 7561, 9216, 11219, 13614, 16419, 19886, 23920, 28733, 34438, 41272, 49184, 58746, 69823, 82948, 98380, 116567
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

From Gus Wiseman, Jul 11 2023: (Start)
A partition is aperiodic (A000837) if its multiplicities are relatively prime. This sequence counts partitions whose multiplicities are aperiodic.
For example:
- The multiplicities of (5,3) are (1,1), with multiplicities (2), with common divisor 2, so it is not counted under a(8).
- The multiplicities of (3,2,2,1) are (2,1,1), with multiplicities (2,1), which are relatively prime, so it is counted under a(8).
- The multiplicities of (3,3,1,1) are (2,2), with multiplicities (2), with common divisor 2, so it is not counted under a(8).
- The multiplicities of (4,4,4,3,3,3,2,1) are (3,3,1,1), with multiplicities (2,2), which have common divisor 2, so it is not counted under a(24).
(End)

Examples

			The a(8) = 16 partitions:
  (8),
  (44),
  (332), (422), (611),
  (2222), (3221), (4211), (5111),
  (22211), (32111), (41111),
  (221111), (311111),
  (2111111),
  (11111111).
Missing from this list are: (53), (62), (71), (431), (521), (3311).
		

Crossrefs

These partitions have ranks A319161.
For distinct instead of relatively prime multiplicities we have A325329.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], GCD@@Length/@Split[Sort[Length/@Split[#]]]==1&]],{n,30}]

A319810 Number of fully periodic integer partitions of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 5, 4, 6, 2, 11, 2, 8, 7, 11, 2, 17, 2, 18, 9, 15, 2, 32, 5, 22, 12, 34, 2, 54, 2, 49, 16, 51, 10, 94, 2, 77, 23, 112, 2, 152, 2, 148, 47, 165, 2, 258, 7, 247, 52, 286, 2, 400, 17, 402, 78, 439, 2, 657, 2, 594, 131, 711, 24
Offset: 1

Views

Author

Gus Wiseman, Sep 28 2018

Keywords

Comments

An integer partition is fully periodic iff either it is a singleton or it is a periodic partition (meaning its multiplicities have a common divisor > 1) with fully periodic multiplicities.

Examples

			The a(12) = 11 fully periodic integer partitions:
  (12)
  (6,6)
  (4,4,4)
  (5,5,1,1)
  (4,4,2,2)
  (3,3,3,3)
  (3,3,3,1,1,1)
  (3,3,2,2,1,1)
  (2,2,2,2,2,2)
  (2,2,2,2,1,1,1,1)
  (1,1,1,1,1,1,1,1,1,1,1,1)
Periodic partitions missing from this list are:
  (4,4,1,1,1,1)
  (3,3,1,1,1,1,1,1)
  (2,2,2,1,1,1,1,1,1)
  (2,2,1,1,1,1,1,1,1,1)
The first non-uniform fully periodic partition is (4,4,3,3,2,2,2,2,1,1,1,1).
The first periodic integer partition that is not fully periodic is (2,2,1,1,1,1).
		

Crossrefs

Programs

  • Mathematica
    totperQ[m_]:=Or[Length[m]==1,And[GCD@@Length/@Split[Sort[m]]>1,totperQ[Sort[Length/@Split[Sort[m]]]]]];
    Table[Length[Select[IntegerPartitions[n],totperQ]],{n,30}]

A108572 Number of partitions of n which, as multisets, are nontrivial repetitions of a multiset.

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 0, 4, 2, 7, 0, 13, 0, 15, 8, 21, 0, 37, 0, 44, 16, 56, 0, 93, 6, 101, 29, 137, 0, 217, 0, 230, 57, 297, 20, 450, 0, 490, 102, 643, 0, 918, 0, 1004, 202, 1255, 0, 1783, 14, 1992, 298, 2438, 0, 3364, 61, 3734, 491, 4565, 0, 6251, 0, 6842, 818
Offset: 1

Views

Author

Len Smiley, Jul 25 2005

Keywords

Comments

The singleton and the all-ones partitions are ignored, so that a(n)=0 if n is prime. If a partition is listed as m_1^am_2^bm_3^c..., then it is counted exactly when gcd(a,b,c,...)>1. These are equinumerous (conjugate) with those partitions for which gcd(m_1,m_2,...)>1 (less 1, the singleton), hence the formula.

Examples

			a(25) = 6: 1^(15)2^5 = 5{1, 1, 1, 2}, 1^52^(10) = 5{1, 2, 2}, 1^(10)3^5 = 5{3, 1, 1}, 2^53^5 = 5{3, 2}, 1^44^4 = 5{4, 1}, 5^5 = 5{5}.
Note that A000041(25)=P(25)=1958, only 6 of which satisfy the criterion.
		

Crossrefs

Programs

  • Maple
    with(combinat):PartMulti:=proc(n::nonnegint) local count,a,i,j,b,m,k,part_vec;
    bigcount:=0; if isprime(n) then return(bigcount) else ps:=partition(n); b:=nops(ps);
    for m from 2 to b-1 do p:=ps[m]; a:=nops(p); part_vec:=array(1..n);
    for k from 1 to n do part_vec[k]:=0 od;
    for i from 1 to a do j:=p[i]; part_vec[j]:=part_vec[j]+1 od;
    g:=0; for j from 1 to n do g:=igcd(g,part_vec[j]) od;
    if g>1 then bigcount:=bigcount+1 fi od; return(bigcount) end if end proc;
    seq(PartMulti(q),q=1..49);
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[Length[#]1]&]],{n,20}] (* Gus Wiseman, Dec 06 2018 *)

Formula

a(n) = A018783(n)-1, n>1. - Vladeta Jovovic, Jul 28 2005

Extensions

More terms from Gus Wiseman, Dec 06 2018

A319179 Number of integer partitions of n that are relatively prime but not aperiodic. Number of integer partitions of n that are aperiodic but not relatively prime.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 2, 6, 1, 9, 1, 14, 7, 17, 1, 32, 1, 36, 15, 55, 1, 77, 6, 100, 27, 121, 1, 200, 1, 209, 56, 296, 19, 403, 1, 489, 101, 596, 1, 885, 1, 947, 192, 1254, 1, 1673, 14, 1979, 297, 2336, 1, 3300, 60, 3594, 490, 4564, 1, 5988, 1, 6841, 800
Offset: 1

Views

Author

Gus Wiseman, Sep 12 2018

Keywords

Comments

An integer partition is aperiodic if its multiplicities are relatively prime.

Examples

			The a(12) = 9 integer partitions that are relatively prime but not aperiodic:
  (5511),
  (332211), (333111), (441111),
  (22221111), (33111111),
  (222111111),
  (2211111111),
  (111111111111).
The a(12) = 9 integer partitions that are aperiodic but not relatively prime:
  (12),
  (8,4), (9,3), (10,2),
  (6,3,3), (6,4,2), (8,2,2),
  (6,2,2,2),
  (4,2,2,2,2).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And[GCD@@#==1,GCD@@Length/@Split[#]>1]&]],{n,30}]

A319811 Number of totally aperiodic integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 6, 7, 14, 17, 27, 34, 55, 63, 99, 117, 162, 203, 286, 333, 469, 558, 737, 903, 1196, 1414, 1860, 2232, 2839, 3422, 4359, 5144, 6531, 7762, 9617, 11479, 14182, 16715, 20630, 24333, 29569, 34890, 42335, 49515, 59871, 70042, 83810, 98105, 117152
Offset: 1

Views

Author

Gus Wiseman, Sep 28 2018

Keywords

Comments

An integer partition is totally aperiodic iff either it is strict or it is aperiodic with totally aperiodic multiplicities.

Examples

			The a(6) = 7 aperiodic integer partitions are: (6), (51), (42), (411), (321), (3111), (21111). The first aperiodic integer partition that is not totally aperiodic is (432211).
		

Crossrefs

Programs

  • Mathematica
    totaperQ[m_]:=Or[UnsameQ@@m,And[GCD@@Length/@Split[Sort[m]]==1,totaperQ[Sort[Length/@Split[Sort[m]]]]]];
    Table[Length[Select[IntegerPartitions[n],totaperQ]],{n,30}]
Showing 1-9 of 9 results.