cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 99 results. Next

A048768 Numbers n such that A048767(n) = n.

Original entry on oeis.org

1, 2, 9, 12, 18, 40, 112, 125, 250, 352, 360, 675, 832, 1008, 1125, 1350, 1500, 2176, 2250, 2401, 3168, 3969, 4802, 4864, 7488, 7938, 11776, 14000, 19584, 21609, 28812, 29403, 29696, 43218, 43776, 44000, 58806, 63488, 75600, 96040, 104000, 105984, 123201, 126000
Offset: 1

Views

Author

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions that are fixed points under the map described in A217605 (which interchanges the parts with their multiplicities). The enumeration of these partitions by sum is given by A217605. - Gus Wiseman, May 04 2019

Examples

			12 = (2^2)*(3^1) = (2nd prime)^pi(2) * (first prime)^pi(3).
From _Gus Wiseman_, May 04 2019: (Start)
The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     9: {2,2}
    12: {1,1,2}
    18: {1,2,2}
    40: {1,1,1,3}
   112: {1,1,1,1,4}
   125: {3,3,3}
   250: {1,3,3,3}
   352: {1,1,1,1,1,5}
   360: {1,1,1,2,2,3}
   675: {2,2,2,3,3}
   832: {1,1,1,1,1,1,6}
  1008: {1,1,1,1,2,2,4}
  1125: {2,2,3,3,3}
  1350: {1,2,2,2,3,3}
  1500: {1,1,2,3,3,3}
  2176: {1,1,1,1,1,1,1,7}
  2250: {1,2,2,3,3,3}
  2401: {4,4,4,4}
(End)
		

Crossrefs

Programs

  • Mathematica
    wt[n_]:=Times@@Cases[FactorInteger[n],{p_,k_}:>Prime[k]^PrimePi[p]];
    Select[Range[1000],wt[#]==#&] (* Gus Wiseman, May 04 2019 *)
  • PARI
    is(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); #Set(e) == #e && prod(i = 1, #e, prime(e[i])^primepi(p[i])) == n;} \\ Amiram Eldar, Oct 20 2023

Extensions

a(1) inserted and more terms added by Amiram Eldar, Oct 20 2023

A382525 Number of times n appears in A048767 (rank of Look-and-Say partition of prime indices). Number of ordered set partitions whose block-sums are the prime signature of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 0, 0, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 3, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 4, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 2, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 05 2025

Keywords

Comments

The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. Hence, the multiplicity of k in the Look-and-Say partition of y is the sum of all parts that appear exactly k times. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
Also the number of ways to choose a set of disjoint strict integer partitions, one of each nonzero multiplicity in the prime factorization of n.

Examples

			The a(27) = 2 partitions with Look-and-Say partition (2,2,2) are: (3,3), (2,2,1,1).
The prime indices of 3456 are {1,1,1,1,1,1,1,2,2,2}, and the partitions with Look-and-Say partition (2,2,2,1,1,1,1,1,1,1) are:
  (7,3,3)
  (7,2,2,1,1)
  (6,3,3,1)
  (5,3,3,2)
  (4,3,3,2,1)
  (4,3,2,2,1,1)
so a(3456) = 6.
		

Crossrefs

Positions of positive terms are A351294, conjugate A381432.
Positions of 0 are A351295, conjugate A381433.
Positions of 1 are A381540, conjugate A381434.
Positions of terms > 1 are A381541, conjugate A381435.
Positions of first appearances are A382775.
A000670 counts ordered set partitions.
A003963 gives product of prime indices.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A381436 lists the section-sum partition of prime indices, ranks A381431.
A381440 lists the Look-and-Say partition of prime indices, ranks A048767.

Programs

  • Mathematica
    stp[y_]:=Select[Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@y],UnsameQ@@Join@@#&];
    Table[Length[stp[Last/@FactorInteger[n]]],{n,100}]

Formula

a(2^n) = A000009(n).
a(prime(n)) = 1.

A381541 Numbers appearing more than once in A048767 (Look-and-Say partition of prime indices).

Original entry on oeis.org

8, 16, 27, 32, 64, 81, 96, 125, 128, 144, 160, 192, 216, 224, 243, 256, 288
Offset: 1

Views

Author

Gus Wiseman, Mar 02 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
The conjugate of a Look-and-Say partition is a section-sum partition; see A381431, union A381432, count A239455.

Examples

			The terms together with their prime indices begin:
    8: {1,1,1}
   16: {1,1,1,1}
   27: {2,2,2}
   32: {1,1,1,1,1}
   64: {1,1,1,1,1,1}
   81: {2,2,2,2}
   96: {1,1,1,1,1,2}
  125: {3,3,3}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  160: {1,1,1,1,1,3}
  192: {1,1,1,1,1,1,2}
  216: {1,1,1,2,2,2}
  224: {1,1,1,1,1,4}
  243: {2,2,2,2,2}
  256: {1,1,1,1,1,1,1,1}
  288: {1,1,1,1,1,2,2}
For example, the term 96 appears in A048767 at positions 44 and 60, with prime indices:
  44: {1,1,5}
  60: {1,1,2,3}
		

Crossrefs

- fixed points are A048768, A217605
- conjugate is A381431, fixed points A000961, A000005
- all numbers present are A351294, conjugate A381432
- numbers missing are A351295, conjugate A381433
- numbers appearing only once are A381540, conjugate A381434
- numbers appearing more than once are A381541 (this), conjugate A381435
A000040 lists the primes.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A381440 lists Look-and-Say partitions of prime indices, conjugate A381436.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    hls[y_]:=Product[Prime[Count[y,x]]^x,{x,Union[y]}];
    Select[Range[100],Count[hls/@IntegerPartitions[Total[prix[#]]],#]>1&]

A381540 Numbers appearing only once in A048767 (Look-and-Say partition of prime indices).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 17, 18, 19, 20, 23, 24, 25, 28, 29, 31, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 67, 68, 71, 72, 73, 75, 76, 79, 80, 83, 88, 89, 92, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116, 117, 121
Offset: 1

Views

Author

Gus Wiseman, Mar 02 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
The conjugate of a Look-and-Say partition is a section-sum partition; see A381431, union A381432, count A239455.

Examples

			The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  13: {6}
  17: {7}
  18: {1,2,2}
  19: {8}
  20: {1,1,3}
  23: {9}
  24: {1,1,1,2}
		

Crossrefs

- fixed points are A048768, A217605
- conjugate is A381431, fixed points A000961, A000005
- all numbers present are A351294, conjugate A381432
- numbers missing are A351295, conjugate A381433
- numbers appearing only once are A381540 (this), conjugate A381434
- numbers appearing more than once are A381541, conjugate A381435
A000040 lists the primes.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.
A239455 counts Look-and-Say partitions, complement A351293.
A381440 lists Look-and-Say partition of prime indices, conjugate A381436.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    hls[y_]:=Product[Prime[Count[y,x]]^x,{x,Union[y]}];
    Select[Range[100],Count[hls/@IntegerPartitions[Total[prix[#]]],#]==1&]

A382775 Least number appearing n times in A048767 (rank of Look-and-Say partition of prime indices).

Original entry on oeis.org

6, 1, 8, 32, 64, 128, 256, 6144, 512, 27648, 1024, 73728, 2048, 147456, 165888, 4096, 248832, 196608, 8192, 497664, 1119744, 393216, 16384, 2239488
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2025

Keywords

Comments

Also the position of first appearance of n in A382525 (number of times n appears in A048767).
The Look-and-Say partition of a multiset or partition y is obtained by interchanging parts with multiplicities. Hence, the multiplicity of k in the Look-and-Say partition of y is the sum of all parts that appear exactly k times. For example, starting with (3,2,2,1,1) we get (2,2,2,1,1,1), the multiset union of ((1,1,1),(2,2),(2)).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
       6: {1,2}
       1: {}
       8: {1,1,1}
      32: {1,1,1,1,1}
      64: {1,1,1,1,1,1}
     128: {1,1,1,1,1,1,1}
     256: {1,1,1,1,1,1,1,1}
    6144: {1,1,1,1,1,1,1,1,1,1,1,2}
     512: {1,1,1,1,1,1,1,1,1}
   27648: {1,1,1,1,1,1,1,1,1,1,2,2,2}
    1024: {1,1,1,1,1,1,1,1,1,1}
   73728: {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
    2048: {1,1,1,1,1,1,1,1,1,1,1}
  147456: {1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2}
  165888: {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
    4096: {1,1,1,1,1,1,1,1,1,1,1,1}
  248832: {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2}
		

Crossrefs

Positions of first appearances in A382525.
The Look-and-Say partition is ranked by A048767, listed by A381440.
Look-and-Say partitions are counted by A239455, complement A351293.
Look-and-Say partitions are ranked by A351294.
Non-Look-and-Say partitions are ranked by A351295, conjugate A381433.
The section-sum partition is ranked by A381431, listed by A381436.
Section-sum partitions are ranked by A381432.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A122111 represents conjugation in terms of Heinz numbers.

Programs

  • Mathematica
    stp[y_]:=Select[Tuples[Select[IntegerPartitions[#], UnsameQ@@#&]&/@y],UnsameQ@@Join@@#&];
    z=Table[Length[stp[Last/@FactorInteger[n]]],{n,10000}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    Table[Position[z,k][[1,1]],{k,0,mnrm[z+1]-1}]

A048769 Numbers n such that A048767(n+1)=A048767(n).

Original entry on oeis.org

5, 14, 21, 77, 670, 714, 2013, 2261, 3477, 4233, 4345, 6230, 7518, 7565, 7957, 8022, 8493, 11454, 13281, 13489, 14905, 18569, 21009, 22017, 24289, 25122, 26105, 33086, 33745, 34553, 46469, 50609, 52206, 52554, 55830, 57589, 58241, 59630, 61745, 65697, 69366
Offset: 1

Views

Author

Keywords

Extensions

More terms from Sean A. Irvine, Jul 03 2021

A130091 Numbers having in their canonical prime factorization mutually distinct exponents.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116
Offset: 1

Views

Author

Reinhard Zumkeller, May 06 2007

Keywords

Comments

This sequence does not contain any number of the form 36n-6 or 36n+6, as such numbers are divisible by 6 but not by 4 or 9. Consequently, this sequence does not contain 24 consecutive integers. The quest for the greatest number of consecutive integers in this sequence has ties to the ABC conjecture (see the MathOverflow link). - Danny Rorabaugh, Sep 23 2015
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions with distinct multiplicities. The enumeration of these partitions by sum is given by A098859. - Gus Wiseman, May 04 2019
Aktaş and Ram Murty (2017) called these terms "special numbers" ("for lack of a better word"). They prove that the number of terms below x is ~ c*x/log(x), where c > 1 is a constant. - Amiram Eldar, Feb 25 2021
Sequence A005940(1+A328592(n)), n >= 1, sorted into ascending order. - Antti Karttunen, Apr 03 2022

Examples

			From _Gus Wiseman_, May 04 2019: (Start)
The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  18: {1,2,2}
  19: {8}
  20: {1,1,3}
  23: {9}
  24: {1,1,1,2}
  25: {3,3}
  27: {2,2,2}
(End)
		

Crossrefs

Programs

  • Maple
    filter:= proc(t) local f;
    f:= map2(op,2,ifactors(t)[2]);
    nops(f) = nops(convert(f,set));
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Mar 30 2015
  • Mathematica
    t[n_] := FactorInteger[n][[All, 2]]; Select[Range[400],  Union[t[#]] == Sort[t[#]] &]  (* Clark Kimberling, Mar 12 2015 *)
  • PARI
    isok(n) = {nbf = omega(n); f = factor(n); for (i = 1, nbf, for (j = i+1, nbf, if (f[i, 2] == f[j, 2], return (0)););); return (1);} \\ Michel Marcus, Aug 18 2013
    
  • PARI
    isA130091(n) = issquarefree(factorback(apply(e->prime(e), (factor(n)[, 2])))); \\ Antti Karttunen, Apr 03 2022

Formula

a(n) < A130092(n) for n<=150, a(n) > A130092(n) for n>150.

A381432 Heinz numbers of section-sum partitions. Union of A381431.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

First differs from A320340, A364347, A350838 in containing 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   20: {1,1,3}
   22: {1,5}
   23: {9}
   25: {3,3}
   26: {1,6}
   27: {2,2,2}
		

Crossrefs

Partitions of this type are counted by A239455, complement A351293.
The conjugate is A351294, union of A048767 (parts A381440, fixed A048768, A217605).
Union of A381431 (parts A381436).
The complement is A381433, conjugate A351295.
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&]

A381433 Heinz numbers of non section-sum partitions. Complement of A381431.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 110, 114, 120, 126, 132, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 198, 204, 210, 216, 220, 222, 228, 231, 234, 238, 240, 246, 252, 258
Offset: 1

Views

Author

Gus Wiseman, Feb 27 2025

Keywords

Comments

First differs from A364348, A364537, A350845 in not containing 65.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The section-sum partition (A381436) of a multiset or partition y is defined as follows: (1) determine and remember the sum of all distinct parts, (2) remove one instance of each distinct part, (3) repeat until no parts are left. The remembered values comprise the section-sum partition. For example, starting with (3,2,2,1,1) we get (6,3).
Equivalently, the k-th part of the section-sum partition is the sum of all (distinct) parts that appear at least k times. Compare to the definition of the conjugate of a partition, where we count parts >= k.
The conjugate of a section-sum partition is a Look-and-Say partition; see A048767, union A351294, count A239455.

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   12: {1,1,2}
   18: {1,2,2}
   21: {2,4}
   24: {1,1,1,2}
   30: {1,2,3}
   36: {1,1,2,2}
   42: {1,2,4}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   70: {1,3,4}
   72: {1,1,1,2,2}
   78: {1,2,6}
   84: {1,1,2,4}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
  102: {1,2,7}
  105: {2,3,4}
  108: {1,1,2,2,2}
		

Crossrefs

Partitions of this type are counted by A351293, complement A239455.
The conjugate is A351295, union of A048767 (parts A381440, fixed A048768, A217605).
The complement is A381432, union of A381431 (conjugate A351294, parts A381436).
A000040 lists the primes, differences A001223.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A122111 represents conjugation in terms of Heinz numbers.
Set multipartitions: A050320, A089259, A116540, A270995, A296119, A318360, A318361.
Partition ideals: A300383, A317141, A381078, A381441, A381452, A381454.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    egs[y_]:=If[y=={},{},Table[Total[Select[Union[y],Count[y,#]>=i&]],{i,Max@@Length/@Split[y]}]];
    Select[Range[100],!MemberQ[Times@@Prime/@#&/@egs/@IntegerPartitions[Total[prix[#]]],#]&]

A217605 Number of partitions of n that are fixed points of a certain map (see comment).

Original entry on oeis.org

1, 1, 0, 0, 2, 1, 1, 0, 1, 1, 3, 0, 3, 3, 3, 0, 4, 3, 2, 1, 6, 4, 5, 2, 5, 7, 10, 2, 10, 10, 11, 4, 9, 5, 14, 7, 13, 13, 18, 7, 20, 17, 22, 10, 22, 19, 32, 15, 26, 26, 40, 15, 37, 36, 43, 21, 44, 32, 55, 30, 46, 43, 75, 32, 67, 62, 83, 40, 82, 61, 104, 58, 89, 71, 136, 66, 114, 97, 149, 77, 143, 106, 176, 101, 160, 123, 222, 114, 190
Offset: 0

Views

Author

Joerg Arndt, Oct 08 2012

Keywords

Comments

Writing a partition of n in the form sum(k>=1, c(k) * k) another (in general different) partition is obtained as sum(k>=1, k * c(k)). For example, the partition 6 = 4* 1 + 1* 2 = 1 + 1 + 1 + 1 + 2 is mapped to 1* 4 + 2 *1 = 2* 1 + 1* 4 = 2 + 2 + 4. This sequence counts the fixed points of this map.
The map is not surjective. For example, all partitions into distinct parts are mapped to n* 1.
The map is an involution for partitions where the multiplicities of all parts are distinct (Wilf partitions, see A098859). If in addition the set of parts the same as the set of multiplicities then the partition is a fixed point.
The second part of the preceding comment is incorrect. For example, the partition (3,3,2,1,1,1) maps to (3,2,2,2,1,1) so is not a fixed point, even though the set of parts is identical to the set of multiplicities. - Gus Wiseman, May 04 2019

Examples

			a(16) = 4 because the following partitions of 16 are fixed points:
  4* 2 + 2* 4  =   2 + 2 + 2 + 2 + 4 + 4
  4* 4  =   4 + 4 + 4 + 4
  6* 1 + 2* 2 + 1* 6  =   1 + 1 + 1 + 1 + 1 + 1 + 2 + 2 + 6
  8* 1 + 1* 8  =   1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 8
From _Gus Wiseman_, May 04 2019: (Start)
The a(1) = 1 through a(16) = 4 partitions are the following (empty columns not shown). The Heinz numbers of these partitions are given by A048768.
  1  22   221  3111  41111  333  3331    33222    33322   333221    4444
     211                         322111  4221111  332221  52211111  442222
                                 511111  6111111  333211  71111111  622111111
                                                                    811111111
(End)
		

Crossrefs

Programs

  • Mathematica
    winv[n_]:=Times@@Cases[FactorInteger[n],{p_,k_}:>Prime[k]^PrimePi[p]];
    Table[Length[Select[IntegerPartitions[n],winv[Times@@Prime/@#]==Times@@Prime/@#&]],{n,0,30}] (* Gus Wiseman, May 04 2019 *)
Showing 1-10 of 99 results. Next