A324695
Lexicographically earliest sequence of positive integers whose prime indices are not already in the sequence.
Original entry on oeis.org
1, 3, 7, 9, 11, 13, 19, 21, 27, 29, 33, 37, 39, 43, 47, 49, 53, 57, 59, 61, 63, 71, 77, 79, 81, 83, 87, 89, 91, 97, 99, 101, 107, 111, 113, 117, 121, 127, 129, 131, 133, 139, 141, 143, 147, 149, 151, 159, 163, 169, 171, 173, 177, 179, 181, 183, 189, 193, 197
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
7: {4}
9: {2,2}
11: {5}
13: {6}
19: {8}
21: {2,4}
27: {2,2,2}
29: {10}
33: {2,5}
37: {12}
39: {2,6}
43: {14}
47: {15}
49: {4,4}
53: {16}
57: {2,8}
59: {17}
61: {18}
63: {2,2,4}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098.
-
aQ[n_]:=And@@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>!aQ[PrimePi[p]]];
Select[Range[100],aQ]
A306844
Number of anti-transitive rooted trees with n nodes.
Original entry on oeis.org
1, 1, 2, 3, 7, 14, 36, 83, 212, 532, 1379, 3577, 9444, 25019, 66943, 179994, 487031, 1323706, 3614622, 9907911
Offset: 1
The a(1) = 1 through a(6) = 14 anti-transitive rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
((o(o))) ((o(oo)))
(o((o))) ((oo(o)))
((((o)))) (o((oo)))
(oo((o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(o(((o))))
(((((o)))))
Cf.
A324694,
A324695,
A324738,
A324741,
A324743,
A324751,
A324754,
A324756,
A324758,
A324759,
A324764.
-
rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
Table[Length[Select[rtall[n],Intersection[Union@@#,#]=={}&]],{n,10}]
A330945
Numbers whose prime indices are not all prime numbers.
Original entry on oeis.org
2, 4, 6, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 84, 86, 87
Offset: 1
The sequence of terms together with their prime indices of prime indices begins:
2: {{}}
4: {{},{}}
6: {{},{1}}
7: {{1,1}}
8: {{},{},{}}
10: {{},{2}}
12: {{},{},{1}}
13: {{1,2}}
14: {{},{1,1}}
16: {{},{},{},{}}
18: {{},{1},{1}}
19: {{1,1,1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
26: {{},{1,2}}
28: {{},{},{1,1}}
29: {{1,3}}
Complement of
A076610 (products of primes of prime index).
Numbers n such that
A330944(n) > 0.
The restriction to odd terms is
A330946.
The restriction to nonprimes is
A330948.
The number of prime prime indices is given by
A257994.
The number of nonprime prime indices is given by
A330944.
Primes of nonprime index are
A007821.
Products of primes of nonprime index are
A320628.
The set S of numbers whose prime indices do not all belong to S is
A324694.
Cf.
A000040,
A000720,
A001222,
A018252,
A056239,
A112798,
A302242,
A320633,
A330943,
A330947,
A330949.
A324696
Lexicographically earliest sequence containing 1 and all numbers divisible by prime(m) for some m not already in the sequence.
Original entry on oeis.org
1, 3, 6, 7, 9, 11, 12, 14, 15, 18, 19, 21, 22, 24, 27, 28, 29, 30, 33, 35, 36, 38, 39, 41, 42, 44, 45, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 63, 66, 69, 70, 71, 72, 75, 76, 77, 78, 81, 82, 83, 84, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 105
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
6: {1,2}
7: {4}
9: {2,2}
11: {5}
12: {1,1,2}
14: {1,4}
15: {2,3}
18: {1,2,2}
19: {8}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
27: {2,2,2}
28: {1,1,4}
29: {10}
30: {1,2,3}
33: {2,5}
35: {3,4}
36: {1,1,2,2}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098.
Cf.
A324694,
A324695,
A324697,
A324698,
A324699,
A324700,
A324701,
A324702,
A324703,
A324704,
A324705.
A324704
Lexicographically earliest sequence containing 1 and all numbers > 2 divisible by prime(m) for some m already in the sequence.
Original entry on oeis.org
1, 4, 6, 7, 8, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 84
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
4: {1,1}
6: {1,2}
7: {4}
8: {1,1,1}
10: {1,3}
12: {1,1,2}
13: {6}
14: {1,4}
16: {1,1,1,1}
17: {7}
18: {1,2,2}
19: {8}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
A324764
Number of anti-transitive rooted identity trees with n nodes.
Original entry on oeis.org
1, 1, 1, 1, 3, 4, 9, 20, 41, 89, 196, 443, 987, 2246, 5114, 11757, 27122, 62898, 146392, 342204, 802429, 1887882
Offset: 1
The a(1) = 1 through a(7) = 9 anti-transitive rooted identity trees:
o (o) ((o)) (((o))) ((o(o))) (((o(o)))) ((o(o(o))))
(o((o))) ((o((o)))) (o((o(o))))
((((o)))) (o(((o)))) ((((o(o)))))
(((((o))))) (((o)((o))))
(((o((o)))))
((o)(((o))))
((o(((o)))))
(o((((o)))))
((((((o))))))
Cf.
A324694,
A324751,
A324756,
A324758,
A324765,
A324767,
A324768,
A324770,
A324839,
A324840,
A324844.
-
idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
Table[Length[Select[idall[n],Intersection[Union@@#,#]=={}&]],{n,10}]
A324698
Lexicographically earliest sequence containing 2 and all numbers > 1 whose prime indices already belong to the sequence.
Original entry on oeis.org
2, 3, 5, 9, 11, 15, 23, 25, 27, 31, 33, 45, 47, 55, 69, 75, 81, 83, 93, 97, 99, 103, 115, 121, 125, 127, 135, 137, 141, 155, 165, 197, 207, 211, 225, 235, 243, 249, 253, 257, 275, 279, 291, 297, 309, 341, 345, 347, 363, 375, 379, 381, 405, 411, 415, 419, 423
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
3: {2}
5: {3}
9: {2,2}
11: {5}
15: {2,3}
23: {9}
25: {3,3}
27: {2,2,2}
31: {11}
33: {2,5}
45: {2,2,3}
47: {15}
55: {3,5}
69: {2,9}
75: {2,3,3}
81: {2,2,2,2}
83: {23}
93: {2,11}
97: {25}
99: {2,2,5}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
A324697
Lexicographically earliest sequence of positive integers > 1 that are prime or whose prime indices already belong to the sequence.
Original entry on oeis.org
2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 37, 41, 43, 45, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 75, 79, 81, 83, 85, 89, 93, 97, 99, 101, 103, 107, 109, 113, 115, 121, 123, 125, 127, 131, 135, 137, 139, 141, 149, 151, 153, 155, 157, 163, 165
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
15: {2,3}
17: {7}
19: {8}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
33: {2,5}
37: {12}
41: {13}
43: {14}
45: {2,2,3}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,1,False,?PrimeQ,True,,And@@Cases[FactorInteger[n],{p_,k_}:>aQ[PrimePi[p]]]];
Select[Range[100],aQ]
A324844
Number of unlabeled rooted trees with n nodes where the branches of no non-leaf branch of any terminal subtree form a submultiset of the branches of the same subtree.
Original entry on oeis.org
1, 1, 2, 3, 7, 13, 32, 71, 170, 406, 1002, 2469, 6204, 15644, 39871, 102116, 263325, 682079, 1775600, 4640220
Offset: 1
The a(1) = 1 through a(6) = 13 rooted trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (o(oo)) (o(ooo))
(((oo))) (((ooo)))
((o)(o)) ((o)(oo))
(o((o))) ((o(oo)))
((((o)))) (o((oo)))
(oo((o)))
((((oo))))
(((o)(o)))
((o((o))))
(o(((o))))
(((((o)))))
The Matula-Goebel numbers of these trees are given by
A324845.
Cf.
A324694,
A324738,
A324744,
A324749,
A324754,
A324759,
A324765,
A324768,
A324838,
A324843,
A324846,
A324847,
A324848,
A324849.
-
submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
rallt[n_]:=Select[Union[Sort/@Join@@(Tuples[rallt/@#]&/@IntegerPartitions[n-1])],And@@Table[!submultQ[b,#],{b,DeleteCases[#,{}]}]&];
Table[Length[rallt[n]],{n,10}]
A324744
Number of maximal subsets of {1...n} containing no element whose prime indices all belong to the subset.
Original entry on oeis.org
1, 1, 2, 2, 3, 4, 4, 5, 6, 8, 8, 11, 11, 22, 22, 22, 22, 28, 28, 44, 44, 52, 52, 76, 76, 88, 88, 96, 96, 184, 184, 240, 240, 264, 264, 296, 296, 592, 592, 592, 592, 728, 728, 1456, 1456, 1456, 1456, 2912, 2912, 3168, 3168, 3168, 3168, 5568, 5568, 5568, 5568
Offset: 0
The a(1) = 1 through a(8) = 6 maximal subsets:
{1} {1} {2} {1,3} {1,3} {1,3,6} {3,4,6} {1,3,6,7}
{2} {1,3} {2,4} {1,5} {1,5,6} {1,3,6,7} {1,5,6,7}
{3,4} {3,4} {3,4,6} {1,5,6,7} {3,4,6,8}
{2,4,5} {2,4,5,6} {2,4,5,6} {3,6,7,8}
{2,5,6,7} {2,4,5,6,8}
{2,5,6,7,8}
The non-maximal case is
A324738. The case for subsets of {2...n} is
A324762.
Cf.
A000720,
A001462,
A007097,
A076078,
A084422,
A085945,
A112798,
A276625,
A290822,
A304360,
A306844,
A320426,
A324764.
-
maxim[s_]:=Complement[s,Last/@Select[Tuples[s,2],UnsameQ@@#&&SubsetQ@@#&]];
Table[Length[maxim[Select[Subsets[Range[n]],!MemberQ[#,k_/;SubsetQ[#,PrimePi/@First/@FactorInteger[k]]]&]]],{n,0,10}]
-
pset(n)={my(b=0, f=factor(n)[, 1]); sum(i=1, #f, 1<<(primepi(f[i])))}
a(n)={my(p=vector(n, k, if(k==1, 1, pset(k))), d=0); for(i=1, #p, d=bitor(d, p[i]));
my(ismax(b)=for(k=1, #p, if(!bittest(b,k) && bitnegimply(p[k], b), my(e=bitor(b, 1<#p, ismax(b), my(f=bitnegimply(p[k], b)); if(!f || bittest(d, k), self()(k+1, b)) + if(f, self()(k+1, b+(1<Andrew Howroyd, Aug 27 2019
Showing 1-10 of 39 results.
Comments