cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A324695 Lexicographically earliest sequence of positive integers whose prime indices are not already in the sequence.

Original entry on oeis.org

1, 3, 7, 9, 11, 13, 19, 21, 27, 29, 33, 37, 39, 43, 47, 49, 53, 57, 59, 61, 63, 71, 77, 79, 81, 83, 87, 89, 91, 97, 99, 101, 107, 111, 113, 117, 121, 127, 129, 131, 133, 139, 141, 143, 147, 149, 151, 159, 163, 169, 171, 173, 177, 179, 181, 183, 189, 193, 197
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  19: {8}
  21: {2,4}
  27: {2,2,2}
  29: {10}
  33: {2,5}
  37: {12}
  39: {2,6}
  43: {14}
  47: {15}
  49: {4,4}
  53: {16}
  57: {2,8}
  59: {17}
  61: {18}
  63: {2,2,4}
		

Crossrefs

Programs

  • Mathematica
    aQ[n_]:=And@@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>!aQ[PrimePi[p]]];
    Select[Range[100],aQ]

A324694 Lexicographically earliest sequence of positive integers divisible by prime(m) for some m not already in the sequence.

Original entry on oeis.org

2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 34, 35, 36, 38, 40, 41, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   4: {1,1}
   5: {3}
   6: {1,2}
   8: {1,1,1}
  10: {1,3}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  17: {7}
  18: {1,2,2}
  20: {1,1,3}
  22: {1,5}
  23: {9}
  24: {1,1,1,2}
  25: {3,3}
  26: {1,6}
  28: {1,1,4}
  30: {1,2,3}
		

Crossrefs

Programs

  • Mathematica
    aQ[n_]:=!And@@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>aQ[PrimePi[p]]];
    Select[Range[100],aQ]

A324696 Lexicographically earliest sequence containing 1 and all numbers divisible by prime(m) for some m not already in the sequence.

Original entry on oeis.org

1, 3, 6, 7, 9, 11, 12, 14, 15, 18, 19, 21, 22, 24, 27, 28, 29, 30, 33, 35, 36, 38, 39, 41, 42, 44, 45, 48, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 63, 66, 69, 70, 71, 72, 75, 76, 77, 78, 81, 82, 83, 84, 87, 88, 90, 91, 93, 95, 96, 97, 98, 99, 101, 102, 105
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   6: {1,2}
   7: {4}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  14: {1,4}
  15: {2,3}
  18: {1,2,2}
  19: {8}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  27: {2,2,2}
  28: {1,1,4}
  29: {10}
  30: {1,2,3}
  33: {2,5}
  35: {3,4}
  36: {1,1,2,2}
		

Crossrefs

Programs

  • Mathematica
    aQ[n_]:=n==1||Or@@Cases[FactorInteger[n],{p_,k_}:>!aQ[PrimePi[p]]];
    Select[Range[100],aQ]

A324736 Number of subsets of {1...n} containing all prime indices of the elements.

Original entry on oeis.org

1, 2, 3, 4, 7, 9, 15, 22, 43, 79, 127, 175, 343, 511, 851, 1571, 3141, 4397, 8765, 13147, 25243, 46843, 76795, 115171, 230299, 454939, 758203, 1516363, 2916079, 4356079, 8676079, 12132079, 24264157, 45000157, 73800253, 145685053, 291369853, 437054653, 728424421
Offset: 0

Views

Author

Gus Wiseman, Mar 13 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also the number of subsets of {1...n} containing no prime indices of the non-elements up to n.

Examples

			The a(0) = 1 through a(6) = 15 subsets:
  {}  {}   {}     {}       {}         {}           {}
      {1}  {1}    {1}      {1}        {1}          {1}
           {1,2}  {1,2}    {1,2}      {1,2}        {1,2}
                  {1,2,3}  {1,4}      {1,4}        {1,4}
                           {1,2,3}    {1,2,3}      {1,2,3}
                           {1,2,4}    {1,2,4}      {1,2,4}
                           {1,2,3,4}  {1,2,3,4}    {1,2,6}
                                      {1,2,3,5}    {1,2,3,4}
                                      {1,2,3,4,5}  {1,2,3,5}
                                                   {1,2,3,6}
                                                   {1,2,4,6}
                                                   {1,2,3,4,5}
                                                   {1,2,3,4,6}
                                                   {1,2,3,5,6}
                                                   {1,2,3,4,5,6}
An example for n = 18 is {1,2,4,7,8,9,12,16,17,18}, whose elements have the following prime indices:
   1: {}
   2: {1}
   4: {1,1}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  12: {1,1,2}
  16: {1,1,1,1}
  17: {7}
  18: {1,2,2}
All of these prime indices {1,2,4,7} belong to the subset, as required.
		

Crossrefs

The strict integer partition version is A324748. The integer partition version is A324753. The Heinz number version is A290822. An infinite version is A324698.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],SubsetQ[#,PrimePi/@First/@Join@@FactorInteger/@DeleteCases[#,1]]&]],{n,0,10}]
  • PARI
    pset(n)={my(b=0, f=factor(n)[,1]); sum(i=1, #f, 1<<(primepi(f[i])))}
    a(n)={my(p=vector(n,k,pset(k)), d=0); for(i=1, #p, d=bitor(d, p[i]));
    ((k,b)->if(k>#p, 1, my(t=self()(k+1,b)); if(!bitnegimply(p[k], b), t+=if(bittest(d,k), self()(k+1, b+(1<Andrew Howroyd, Aug 15 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 15 2019

A324704 Lexicographically earliest sequence containing 1 and all numbers > 2 divisible by prime(m) for some m already in the sequence.

Original entry on oeis.org

1, 4, 6, 7, 8, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 84
Offset: 1

Views

Author

Gus Wiseman, Mar 11 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   4: {1,1}
   6: {1,2}
   7: {4}
   8: {1,1,1}
  10: {1,3}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  16: {1,1,1,1}
  17: {7}
  18: {1,2,2}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  24: {1,1,1,2}
  26: {1,6}
  28: {1,1,4}
		

Crossrefs

Programs

A324697 Lexicographically earliest sequence of positive integers > 1 that are prime or whose prime indices already belong to the sequence.

Original entry on oeis.org

2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 37, 41, 43, 45, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 75, 79, 81, 83, 85, 89, 93, 97, 99, 101, 103, 107, 109, 113, 115, 121, 123, 125, 127, 131, 135, 137, 139, 141, 149, 151, 153, 155, 157, 163, 165
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  15: {2,3}
  17: {7}
  19: {8}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  33: {2,5}
  37: {12}
  41: {13}
  43: {14}
  45: {2,2,3}
		

Crossrefs

Programs

  • Mathematica
    aQ[n_]:=Switch[n,1,False,?PrimeQ,True,,And@@Cases[FactorInteger[n],{p_,k_}:>aQ[PrimePi[p]]]];
    Select[Range[100],aQ]

A324753 Number of integer partitions of n containing all prime indices of their parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 5, 7, 8, 14, 16, 23, 29, 40, 49, 66, 81, 109, 133, 172, 211, 274, 332, 419, 511, 640, 775, 965, 1165, 1434, 1730, 2109, 2530, 3083, 3683, 4447, 5308, 6375, 7573, 9062, 10730, 12786, 15104, 17909, 21095, 24937, 29284, 34488, 40421, 47450
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2019

Keywords

Comments

These could be described as transitive integer partitions.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(1) = 1 through a(8) = 8 integer partitions:
  (1)  (11)  (21)   (211)   (41)     (321)     (421)      (3221)
             (111)  (1111)  (221)    (411)     (2221)     (4211)
                            (2111)   (2211)    (3211)     (22211)
                            (11111)  (21111)   (4111)     (32111)
                                     (111111)  (22111)    (41111)
                                               (211111)   (221111)
                                               (1111111)  (2111111)
                                                          (11111111)
		

Crossrefs

The subset version is A324736. The strict case is A324748. The Heinz number version is A290822. An infinite version is A324698.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SubsetQ[#,PrimePi/@First/@Join@@FactorInteger/@DeleteCases[#,1]]&]],{n,0,30}]

A324699 Lexicographically earliest sequence of positive integers whose prime indices minus 1 already belong to the sequence.

Original entry on oeis.org

1, 3, 7, 9, 19, 21, 27, 29, 49, 57, 63, 71, 79, 81, 87, 107, 113, 133, 147, 171, 189, 203, 213, 229, 237, 243, 261, 271, 311, 321, 339, 343, 359, 361, 399, 409, 421, 441, 457, 497, 513, 551, 553, 567, 593, 609, 619, 639, 687, 711, 729, 749, 757, 783, 791, 813
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    3: {2}
    7: {4}
    9: {2,2}
   19: {8}
   21: {2,4}
   27: {2,2,2}
   29: {10}
   49: {4,4}
   57: {2,8}
   63: {2,2,4}
   71: {20}
   79: {22}
   81: {2,2,2,2}
   87: {2,10}
  107: {28}
  113: {30}
  133: {4,8}
  147: {2,4,4}
  171: {2,2,8}
  189: {2,2,2,4}
		

Crossrefs

Programs

Formula

a(n) = A306719(n) - 1.

A324700 Lexicographically earliest sequence containing 0 and all positive integers > 1 whose prime indices minus 1 already belong to the sequence.

Original entry on oeis.org

0, 2, 4, 5, 8, 10, 11, 13, 16, 20, 22, 23, 25, 26, 31, 32, 37, 40, 43, 44, 46, 50, 52, 55, 59, 62, 64, 65, 73, 74, 80, 83, 86, 88, 89, 92, 100, 101, 103, 104, 110, 115, 118, 121, 124, 125, 128, 130, 131, 137, 143, 146, 148, 155, 160, 163, 166, 169, 172, 176
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   0
   2: {1}
   4: {1,1}
   5: {3}
   8: {1,1,1}
  10: {1,3}
  11: {5}
  13: {6}
  16: {1,1,1,1}
  20: {1,1,3}
  22: {1,5}
  23: {9}
  25: {3,3}
  26: {1,6}
  31: {11}
  32: {1,1,1,1,1}
  37: {12}
  40: {1,1,1,3}
  43: {14}
  44: {1,1,5}
		

Crossrefs

Programs

Formula

a(n) = A324701(n) - 1.

A324701 Lexicographically earliest sequence containing 1 and all positive integers n such that the prime indices of n - 1 already belong to the sequence.

Original entry on oeis.org

1, 3, 5, 6, 9, 11, 12, 14, 17, 21, 23, 24, 26, 27, 32, 33, 38, 41, 44, 45, 47, 51, 53, 56, 60, 63, 65, 66, 74, 75, 81, 84, 87, 89, 90, 93, 101, 102, 104, 105, 111, 116, 119, 122, 125, 126, 129, 131, 132, 138, 144, 147, 149, 156, 161, 164, 167, 170, 173, 177
Offset: 1

Views

Author

Gus Wiseman, Mar 10 2019

Keywords

Comments

A self-describing sequence, similar to A304360.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Crossrefs

Programs

Formula

a(n) = A324700(n) + 1.
Showing 1-10 of 19 results. Next