A324695
Lexicographically earliest sequence of positive integers whose prime indices are not already in the sequence.
Original entry on oeis.org
1, 3, 7, 9, 11, 13, 19, 21, 27, 29, 33, 37, 39, 43, 47, 49, 53, 57, 59, 61, 63, 71, 77, 79, 81, 83, 87, 89, 91, 97, 99, 101, 107, 111, 113, 117, 121, 127, 129, 131, 133, 139, 141, 143, 147, 149, 151, 159, 163, 169, 171, 173, 177, 179, 181, 183, 189, 193, 197
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
7: {4}
9: {2,2}
11: {5}
13: {6}
19: {8}
21: {2,4}
27: {2,2,2}
29: {10}
33: {2,5}
37: {12}
39: {2,6}
43: {14}
47: {15}
49: {4,4}
53: {16}
57: {2,8}
59: {17}
61: {18}
63: {2,2,4}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098.
-
aQ[n_]:=And@@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>!aQ[PrimePi[p]]];
Select[Range[100],aQ]
A324694
Lexicographically earliest sequence of positive integers divisible by prime(m) for some m not already in the sequence.
Original entry on oeis.org
2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 28, 30, 31, 32, 34, 35, 36, 38, 40, 41, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
4: {1,1}
5: {3}
6: {1,2}
8: {1,1,1}
10: {1,3}
12: {1,1,2}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
17: {7}
18: {1,2,2}
20: {1,1,3}
22: {1,5}
23: {9}
24: {1,1,1,2}
25: {3,3}
26: {1,6}
28: {1,1,4}
30: {1,2,3}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=!And@@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>aQ[PrimePi[p]]];
Select[Range[100],aQ]
A324704
Lexicographically earliest sequence containing 1 and all numbers > 2 divisible by prime(m) for some m already in the sequence.
Original entry on oeis.org
1, 4, 6, 7, 8, 10, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 84
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
4: {1,1}
6: {1,2}
7: {4}
8: {1,1,1}
10: {1,3}
12: {1,1,2}
13: {6}
14: {1,4}
16: {1,1,1,1}
17: {7}
18: {1,2,2}
19: {8}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
A324698
Lexicographically earliest sequence containing 2 and all numbers > 1 whose prime indices already belong to the sequence.
Original entry on oeis.org
2, 3, 5, 9, 11, 15, 23, 25, 27, 31, 33, 45, 47, 55, 69, 75, 81, 83, 93, 97, 99, 103, 115, 121, 125, 127, 135, 137, 141, 155, 165, 197, 207, 211, 225, 235, 243, 249, 253, 257, 275, 279, 291, 297, 309, 341, 345, 347, 363, 375, 379, 381, 405, 411, 415, 419, 423
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
3: {2}
5: {3}
9: {2,2}
11: {5}
15: {2,3}
23: {9}
25: {3,3}
27: {2,2,2}
31: {11}
33: {2,5}
45: {2,2,3}
47: {15}
55: {3,5}
69: {2,9}
75: {2,3,3}
81: {2,2,2,2}
83: {23}
93: {2,11}
97: {25}
99: {2,2,5}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
A324697
Lexicographically earliest sequence of positive integers > 1 that are prime or whose prime indices already belong to the sequence.
Original entry on oeis.org
2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 23, 25, 27, 29, 31, 33, 37, 41, 43, 45, 47, 51, 53, 55, 59, 61, 67, 69, 71, 73, 75, 79, 81, 83, 85, 89, 93, 97, 99, 101, 103, 107, 109, 113, 115, 121, 123, 125, 127, 131, 135, 137, 139, 141, 149, 151, 153, 155, 157, 163, 165
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
3: {2}
5: {3}
7: {4}
9: {2,2}
11: {5}
13: {6}
15: {2,3}
17: {7}
19: {8}
23: {9}
25: {3,3}
27: {2,2,2}
29: {10}
31: {11}
33: {2,5}
37: {12}
41: {13}
43: {14}
45: {2,2,3}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,1,False,?PrimeQ,True,,And@@Cases[FactorInteger[n],{p_,k_}:>aQ[PrimePi[p]]]];
Select[Range[100],aQ]
A324838
Number of unlabeled rooted trees with n nodes where the branches of no branch of the root form a submultiset of the branches of the root.
Original entry on oeis.org
1, 0, 1, 2, 5, 10, 28, 64, 169, 422, 1108, 2872, 7627, 20202, 54216, 145867, 395288
Offset: 1
The a(1) = 1 through a(6) = 10 rooted trees:
o ((o)) ((oo)) ((ooo)) ((oooo))
(((o))) (((oo))) (((ooo)))
((o)(o)) ((o)(oo))
((o(o))) ((o(oo)))
((((o)))) ((oo(o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o((o))))
(((((o)))))
Cf.
A324694,
A324696,
A324704,
A324738,
A324744,
A324758,
A324759,
A324765,
A324768,
A324771,
A324839,
A324840,
A324844,
A324846.
-
submultQ[cap_,fat_]:=And@@Function[i,Count[fat,i]>=Count[cap,i]]/@Union[List@@cap];
rtall[n_]:=Union[Sort/@Join@@(Tuples[rtall/@#]&/@IntegerPartitions[n-1])];
Table[Length[Select[rtall[n],And@@Table[!submultQ[b,#],{b,#}]&]],{n,10}]
A331912
Lexicographically earliest sequence of positive integers that have at most one distinct prime index already in the sequence.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 26, 27, 29, 31, 32, 37, 39, 41, 43, 47, 49, 52, 53, 58, 59, 61, 64, 65, 67, 71, 73, 74, 79, 81, 83, 86, 87, 89, 91, 94, 97, 101, 103, 104, 107, 109, 111, 113, 116, 117, 121, 122, 125, 127, 128, 129, 131, 137
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 37: {12} 86: {1,14}
2: {1} 39: {2,6} 87: {2,10}
3: {2} 41: {13} 89: {24}
4: {1,1} 43: {14} 91: {4,6}
5: {3} 47: {15} 94: {1,15}
7: {4} 49: {4,4} 97: {25}
8: {1,1,1} 52: {1,1,6} 101: {26}
9: {2,2} 53: {16} 103: {27}
11: {5} 58: {1,10} 104: {1,1,1,6}
13: {6} 59: {17} 107: {28}
16: {1,1,1,1} 61: {18} 109: {29}
17: {7} 64: {1,1,1,1,1,1} 111: {2,12}
19: {8} 65: {3,6} 113: {30}
23: {9} 67: {19} 116: {1,1,10}
25: {3,3} 71: {20} 117: {2,2,6}
26: {1,6} 73: {21} 121: {5,5}
27: {2,2,2} 74: {1,12} 122: {1,18}
29: {10} 79: {22} 125: {3,3,3}
31: {11} 81: {2,2,2,2} 127: {31}
32: {1,1,1,1,1} 83: {23} 128: {1,1,1,1,1,1,1}
For example, the prime indices of 117 are {2,2,6}, of which only 2 is already in the sequence, so 117 is in the sequence.
Numbers S without all prime indices in S are
A324694.
Numbers S without any prime indices in S are
A324695.
Numbers S with at most one prime index in S are
A331784.
Numbers S with exactly one prime index in S are
A331785.
Numbers S with exactly one distinct prime index in S are
A331913.
-
aQ[n_]:=Length[Select[PrimePi/@First/@If[n==1,{},FactorInteger[n]],aQ]]<=1;
Select[Range[100],aQ]
A324699
Lexicographically earliest sequence of positive integers whose prime indices minus 1 already belong to the sequence.
Original entry on oeis.org
1, 3, 7, 9, 19, 21, 27, 29, 49, 57, 63, 71, 79, 81, 87, 107, 113, 133, 147, 171, 189, 203, 213, 229, 237, 243, 261, 271, 311, 321, 339, 343, 359, 361, 399, 409, 421, 441, 457, 497, 513, 551, 553, 567, 593, 609, 619, 639, 687, 711, 729, 749, 757, 783, 791, 813
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
7: {4}
9: {2,2}
19: {8}
21: {2,4}
27: {2,2,2}
29: {10}
49: {4,4}
57: {2,8}
63: {2,2,4}
71: {20}
79: {22}
81: {2,2,2,2}
87: {2,10}
107: {28}
113: {30}
133: {4,8}
147: {2,4,4}
171: {2,2,8}
189: {2,2,2,4}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360,
A306719.
Cf.
A324694,
A324695,
A324696,
A324697,
A324698,
A324700,
A324701,
A324702,
A324703,
A324704,
A324705.
A324700
Lexicographically earliest sequence containing 0 and all positive integers > 1 whose prime indices minus 1 already belong to the sequence.
Original entry on oeis.org
0, 2, 4, 5, 8, 10, 11, 13, 16, 20, 22, 23, 25, 26, 31, 32, 37, 40, 43, 44, 46, 50, 52, 55, 59, 62, 64, 65, 73, 74, 80, 83, 86, 88, 89, 92, 100, 101, 103, 104, 110, 115, 118, 121, 124, 125, 128, 130, 131, 137, 143, 146, 148, 155, 160, 163, 166, 169, 172, 176
Offset: 1
The sequence of terms together with their prime indices begins:
0
2: {1}
4: {1,1}
5: {3}
8: {1,1,1}
10: {1,3}
11: {5}
13: {6}
16: {1,1,1,1}
20: {1,1,3}
22: {1,5}
23: {9}
25: {3,3}
26: {1,6}
31: {11}
32: {1,1,1,1,1}
37: {12}
40: {1,1,1,3}
43: {14}
44: {1,1,5}
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,0,True,1,False,,And@@Cases[FactorInteger[n],{p,k_}:>aQ[PrimePi[p]-1]]];
Select[Range[0,100],aQ]
A324701
Lexicographically earliest sequence containing 1 and all positive integers n such that the prime indices of n - 1 already belong to the sequence.
Original entry on oeis.org
1, 3, 5, 6, 9, 11, 12, 14, 17, 21, 23, 24, 26, 27, 32, 33, 38, 41, 44, 45, 47, 51, 53, 56, 60, 63, 65, 66, 74, 75, 81, 84, 87, 89, 90, 93, 101, 102, 104, 105, 111, 116, 119, 122, 125, 126, 129, 131, 132, 138, 144, 147, 149, 156, 161, 164, 167, 170, 173, 177
Offset: 1
Cf.
A000002,
A000720,
A001222,
A001462,
A007097,
A055396,
A061395,
A079000,
A079254,
A109298,
A112798,
A276625,
A277098,
A304360.
-
aQ[n_]:=Switch[n,0,False,1,True,,And@@Cases[FactorInteger[n-1],{p,k_}:>aQ[PrimePi[p]]]];
Select[Range[0,100],aQ]
Showing 1-10 of 23 results.
Comments