cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A167865 Number of partitions of n into distinct parts greater than 1, with each part divisible by the next.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 1, 3, 3, 3, 1, 5, 1, 5, 4, 3, 1, 6, 2, 5, 4, 5, 1, 9, 1, 6, 4, 4, 4, 8, 1, 6, 6, 7, 1, 11, 1, 8, 8, 4, 1, 10, 3, 10, 5, 8, 1, 11, 4, 10, 7, 6, 1, 13, 1, 10, 11, 7, 6, 15, 1, 9, 5, 11, 1, 14, 1, 9, 12, 8, 5, 15, 1, 16, 9, 8, 1, 18, 5, 12, 7, 10, 1, 21, 7, 13, 11, 5
Offset: 0

Views

Author

Max Alekseyev, Nov 13 2009

Keywords

Comments

Number of lone-child-avoiding achiral rooted trees with n + 1 vertices, where a rooted tree is lone-child-avoiding if all terminal subtrees have at least two branches, and achiral if all branches directly under any given vertex are equal. The Matula-Goebel numbers of these trees are given by A331967. - Gus Wiseman, Feb 07 2020

Examples

			a(12) = 4: [12], [10,2], [9,3], [8,4].
a(14) = 3: [14], [12,2], [8,4,2].
a(18) = 5: [18], [16,2], [15,3], [12,6], [12,4,2].
From _Gus Wiseman_, Jul 13 2018: (Start)
The a(36) = 8 lone-child-avoiding achiral rooted trees with 37 vertices:
  (oooooooooooooooooooooooooooooooooooo)
  ((oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo)(oo))
  ((ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo)(ooo))
  ((ooooo)(ooooo)(ooooo)(ooooo)(ooooo)(ooooo))
  ((oooooooo)(oooooooo)(oooooooo)(oooooooo))
  (((ooo)(ooo))((ooo)(ooo))((ooo)(ooo))((ooo)(ooo)))
  ((ooooooooooo)(ooooooooooo)(ooooooooooo))
  ((ooooooooooooooooo)(ooooooooooooooooo))
(End)
		

Crossrefs

The semi-achiral version is A320268.
Matula-Goebel numbers of these trees are A331967.
The semi-lone-child-avoiding version is A331991.
Achiral rooted trees are counted by A003238.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=0, 1, add(a((n-d)/d), d=divisors(n) minus{1}))
        end:
    seq(a(n), n=0..200);  # Alois P. Heinz, Mar 28 2011
  • Mathematica
    a[0] = 1; a[n_] := a[n] = DivisorSum[n, a[(n-#)/#]&, #>1&]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Oct 07 2015 *)
  • PARI
    { A167865(n) = if(n==0,return(1)); sumdiv(n,d, if(d>1, A167865((n-d)\d) ) ) }

Formula

a(0) = 1 and for n>=1, a(n) = Sum_{d|n, d>1} a((n-d)/d).
G.f. A(x) satisfies: A(x) = 1 + x^2*A(x^2) + x^3*A(x^3) + x^4*A(x^4) + ... - Ilya Gutkovskiy, May 09 2019

A331936 Matula-Goebel numbers of semi-lone-child-avoiding rooted trees with at most one distinct non-leaf branch directly under any vertex (semi-achirality).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 14, 16, 18, 24, 26, 27, 28, 32, 36, 38, 46, 48, 49, 52, 54, 56, 64, 72, 74, 76, 81, 86, 92, 96, 98, 104, 106, 108, 112, 122, 128, 144, 148, 152, 162, 169, 172, 178, 184, 192, 196, 202, 206, 208, 212, 214, 216, 224, 243, 244, 256, 262, 288
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

First differs from A331873 in lacking 69, the Matula-Goebel number of the tree ((o)((o)(o))).
A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of 1, 2, and all numbers equal to a power of 2 (other than 1) times a power of prime(j) for some j > 1 already in the sequence.

Examples

			The sequence of rooted trees ranked by this sequence together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
   9: ((o)(o))
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  24: (ooo(o))
  26: (o(o(o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  46: (o((o)(o)))
  48: (oooo(o))
  49: ((oo)(oo))
The sequence of terms together with their prime indices begins:
    1: {}              52: {1,1,6}            152: {1,1,1,8}
    2: {1}             54: {1,2,2,2}          162: {1,2,2,2,2}
    4: {1,1}           56: {1,1,1,4}          169: {6,6}
    6: {1,2}           64: {1,1,1,1,1,1}      172: {1,1,14}
    8: {1,1,1}         72: {1,1,1,2,2}        178: {1,24}
    9: {2,2}           74: {1,12}             184: {1,1,1,9}
   12: {1,1,2}         76: {1,1,8}            192: {1,1,1,1,1,1,2}
   14: {1,4}           81: {2,2,2,2}          196: {1,1,4,4}
   16: {1,1,1,1}       86: {1,14}             202: {1,26}
   18: {1,2,2}         92: {1,1,9}            206: {1,27}
   24: {1,1,1,2}       96: {1,1,1,1,1,2}      208: {1,1,1,1,6}
   26: {1,6}           98: {1,4,4}            212: {1,1,16}
   27: {2,2,2}        104: {1,1,1,6}          214: {1,28}
   28: {1,1,4}        106: {1,16}             216: {1,1,1,2,2,2}
   32: {1,1,1,1,1}    108: {1,1,2,2,2}        224: {1,1,1,1,1,4}
   36: {1,1,2,2}      112: {1,1,1,1,4}        243: {2,2,2,2,2}
   38: {1,8}          122: {1,18}             244: {1,1,18}
   46: {1,9}          128: {1,1,1,1,1,1,1}    256: {1,1,1,1,1,1,1,1}
   48: {1,1,1,1,2}    144: {1,1,1,1,2,2}      262: {1,32}
   49: {4,4}          148: {1,1,12}           288: {1,1,1,1,1,2,2}
		

Crossrefs

A superset of A000079.
The non-lone-child-avoiding version is A320230.
The non-semi version is A320269.
These trees are counted by A331933.
Not requiring semi-achirality gives A331935.
The fully-achiral case is A331992.
Achiral trees are counted by A003238.
Numbers with at most one distinct odd prime factor are A070776.
Matula-Goebel numbers of achiral rooted trees are A214577.
Matula-Goebel numbers of semi-identity trees are A306202.
Numbers S with at most one distinct prime index in S are A331912.

Programs

  • Mathematica
    msQ[n_]:=n<=2||!PrimeQ[n]&&Length[DeleteCases[FactorInteger[n],{2,_}]]<=1&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],msQ]

Formula

Intersection of A320230 and A331935.

A320269 Matula-Goebel numbers of lone-child-avoiding rooted trees in which the non-leaf branches directly under any given node are all equal (semi-achirality).

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 49, 56, 64, 76, 86, 98, 106, 112, 128, 152, 172, 196, 212, 214, 224, 256, 262, 304, 326, 343, 344, 361, 392, 424, 428, 448, 454, 512, 524, 526, 608, 622, 652, 686, 688, 722, 766, 784, 848, 856, 886, 896, 908, 1024, 1042, 1048, 1052
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

First differs from A331871 in lacking 1589.
Lone-child-avoiding means there are no unary branchings.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The sequence of rooted trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   49: ((oo)(oo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
   98: (o(oo)(oo))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  152: (ooo(ooo))
  172: (oo(o(oo)))
  196: (oo(oo)(oo))
		

Crossrefs

The same-tree version is A291441.
Not requiring lone-child-avoidance gives A320230.
The enumeration of these trees by vertices is A320268.
The semi-lone-child-avoiding version is A331936.
If the non-leaf branches are all different instead of equal we get A331965.
The fully-achiral case is A331967.
Achiral rooted trees are counted by A003238.
MG-numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
    hmakQ[n_]:=And[!PrimeQ[n],SameQ@@DeleteCases[primeMS[n],1],And@@hmakQ/@primeMS[n]];Select[Range[1000],hmakQ[#]&]

Extensions

Updated with corrected terminology by Gus Wiseman, Feb 06 2020

A331784 Lexicographically earliest sequence of positive integers that have at most one prime index already in the sequence, counting multiplicity.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 13, 14, 17, 19, 21, 23, 26, 29, 31, 35, 37, 38, 39, 41, 43, 46, 47, 49, 53, 57, 58, 59, 61, 65, 67, 69, 71, 73, 74, 77, 79, 83, 87, 89, 91, 94, 95, 97, 98, 101, 103, 106, 107, 109, 111, 113, 115, 119, 122, 127, 131, 133, 137, 139, 141, 142
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Conjecture: A331912(n)/a(n) -> 1 as n -> infinity.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}        43: {14}       91: {4,6}      141: {2,15}
    2: {1}       46: {1,9}      94: {1,15}     142: {1,20}
    3: {2}       47: {15}       95: {3,8}      143: {5,6}
    5: {3}       49: {4,4}      97: {25}       145: {3,10}
    7: {4}       53: {16}       98: {1,4,4}    147: {2,4,4}
   11: {5}       57: {2,8}     101: {26}       149: {35}
   13: {6}       58: {1,10}    103: {27}       151: {36}
   14: {1,4}     59: {17}      106: {1,16}     157: {37}
   17: {7}       61: {18}      107: {28}       158: {1,22}
   19: {8}       65: {3,6}     109: {29}       159: {2,16}
   21: {2,4}     67: {19}      111: {2,12}     161: {4,9}
   23: {9}       69: {2,9}     113: {30}       163: {38}
   26: {1,6}     71: {20}      115: {3,9}      167: {39}
   29: {10}      73: {21}      119: {4,7}      169: {6,6}
   31: {11}      74: {1,12}    122: {1,18}     173: {40}
   35: {3,4}     77: {4,5}     127: {31}       178: {1,24}
   37: {12}      79: {22}      131: {32}       179: {41}
   38: {1,8}     83: {23}      133: {4,8}      181: {42}
   39: {2,6}     87: {2,10}    137: {33}       182: {1,4,6}
   41: {13}      89: {24}      139: {34}       183: {2,18}
For example, the prime indices of 95 are {3,8}, of which only 3 is in the sequence, so 95 is in the sequence.
		

Crossrefs

Contains all prime numbers A000040.
Numbers S without all prime indices in S are A324694.
Numbers S without any prime indices in S are A324695.
Numbers S with exactly one prime index in S are A331785.
Numbers S with at most one distinct prime index in S are A331912.
Numbers S with exactly one distinct prime index in S are A331913.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aQ[n_]:=Length[Cases[primeMS[n],_?aQ]]<=1;
    Select[Range[100],aQ]

A331933 Number of semi-lone-child-avoiding rooted trees with at most one distinct non-leaf branch directly under any vertex.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 12, 18, 33, 52, 90, 142, 242, 384, 639, 1028, 1688, 2716, 4445, 7161, 11665, 18839, 30595, 49434, 80199, 129637, 210079, 339750, 550228, 889978, 1440909, 2330887, 3772845, 6103823, 9878357, 15982196, 25863454, 41845650, 67713550, 109559443
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.

Examples

			The a(1) = 1 through a(8) = 18 trees:
  o  (o)  (oo)  (ooo)   (oooo)    (ooooo)    (oooooo)
                (o(o))  (o(oo))   (o(ooo))   (o(oooo))
                        (oo(o))   (oo(oo))   (oo(ooo))
                        ((o)(o))  (ooo(o))   (ooo(oo))
                                  (o(o)(o))  (oooo(o))
                                  (o(o(o)))  ((oo)(oo))
                                             (o(o(oo)))
                                             (o(oo(o)))
                                             (oo(o)(o))
                                             (oo(o(o)))
                                             ((o)(o)(o))
                                             (o((o)(o)))
		

Crossrefs

Not requiring lone-child-avoidance gives A320222.
The non-semi version is A320268.
Matula-Goebel numbers of these trees are A331936.
Achiral trees are A003238.
Semi-identity trees are A306200.
Numbers S with at most one distinct prime index in S are A331912.
Semi-lone-child-avoiding rooted trees are A331934.

Programs

  • Mathematica
    sseo[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Select[Union[Sort/@Tuples[sseo/@c]],Length[Union[DeleteCases[#,{}]]]<=1&]]/@Rest[IntegerPartitions[n-1]]];
    Table[Length[sseo[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(i=2, n-2, ((n-1)\i)*v[i])); v} \\ Andrew Howroyd, Feb 09 2020

Formula

a(n) = 1 + Sum_{i=2..n-2} floor((n-1)/i)*a(i). - Andrew Howroyd, Feb 09 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Feb 09 2020

A331785 Lexicographically earliest sequence containing 1 and all positive integers with exactly one prime index already in the sequence, counting multiplicity.

Original entry on oeis.org

1, 2, 3, 5, 11, 14, 21, 26, 31, 34, 35, 38, 39, 43, 46, 51, 57, 58, 65, 69, 73, 74, 77, 82, 85, 87, 94, 95, 98, 101, 106, 111, 115, 118, 122, 123, 127, 134, 139, 141, 142, 143, 145, 147, 149, 158, 159, 163, 166, 167, 177, 178, 182, 183, 185, 187, 191, 194, 199
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}         73: {21}       142: {1,20}     205: {3,13}
    2: {1}        74: {1,12}     143: {5,6}      206: {1,27}
    3: {2}        77: {4,5}      145: {3,10}     209: {5,8}
    5: {3}        82: {1,13}     147: {2,4,4}    213: {2,20}
   11: {5}        85: {3,7}      149: {35}       214: {1,28}
   14: {1,4}      87: {2,10}     158: {1,22}     217: {4,11}
   21: {2,4}      94: {1,15}     159: {2,16}     218: {1,29}
   26: {1,6}      95: {3,8}      163: {38}       226: {1,30}
   31: {11}       98: {1,4,4}    166: {1,23}     233: {51}
   34: {1,7}     101: {26}       167: {39}       235: {3,15}
   35: {3,4}     106: {1,16}     177: {2,17}     237: {2,22}
   38: {1,8}     111: {2,12}     178: {1,24}     238: {1,4,7}
   39: {2,6}     115: {3,9}      182: {1,4,6}    245: {3,4,4}
   43: {14}      118: {1,17}     183: {2,18}     249: {2,23}
   46: {1,9}     122: {1,18}     185: {3,12}     253: {5,9}
   51: {2,7}     123: {2,13}     187: {5,7}      262: {1,32}
   57: {2,8}     127: {31}       191: {43}       265: {3,16}
   58: {1,10}    134: {1,19}     194: {1,25}     266: {1,4,8}
   65: {3,6}     139: {34}       199: {46}       267: {2,24}
   69: {2,9}     141: {2,15}     201: {2,19}     269: {57}
For example, the prime indices of 77 are {4,5}, of which only 5 is in the sequence, so 77 is in the sequence.
		

Crossrefs

Closed under A000040.
Numbers S without all prime indices in S are A324694.
Numbers S without any prime indices in S are A324695.
Numbers S with at most one prime index in S are A331784.
Numbers S with at most one distinct prime index in S are A331912.
Numbers S with exactly one distinct prime index in S are A331913.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aQ[n_]:=n==1||Length[Select[primeMS[n],aQ]]==1;
    Select[Range[100],aQ]

A331914 Numbers with at most one prime prime index, counted with multiplicity.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 26, 28, 29, 31, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Feb 08 2020

Keywords

Comments

First differs from A324935 in having 39.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}           24: {1,1,1,2}      52: {1,1,6}
   2: {1}          26: {1,6}          53: {16}
   3: {2}          28: {1,1,4}        56: {1,1,1,4}
   4: {1,1}        29: {10}           57: {2,8}
   5: {3}          31: {11}           58: {1,10}
   6: {1,2}        32: {1,1,1,1,1}    59: {17}
   7: {4}          34: {1,7}          61: {18}
   8: {1,1,1}      35: {3,4}          62: {1,11}
  10: {1,3}        37: {12}           64: {1,1,1,1,1,1}
  11: {5}          38: {1,8}          65: {3,6}
  12: {1,1,2}      39: {2,6}          67: {19}
  13: {6}          40: {1,1,1,3}      68: {1,1,7}
  14: {1,4}        41: {13}           69: {2,9}
  16: {1,1,1,1}    42: {1,2,4}        70: {1,3,4}
  17: {7}          43: {14}           71: {20}
  19: {8}          44: {1,1,5}        73: {21}
  20: {1,1,3}      46: {1,9}          74: {1,12}
  21: {2,4}        47: {15}           76: {1,1,8}
  22: {1,5}        48: {1,1,1,1,2}    77: {4,5}
  23: {9}          49: {4,4}          78: {1,2,6}
		

Crossrefs

These are numbers n such that A257994(n) <= 1.
Prime-indexed primes are A006450, with products A076610.
The number of distinct prime prime indices is A279952.
Numbers with at least one prime prime index are A331386.
The set S of numbers with at most one prime index in S are A331784.
The set S of numbers with at most one distinct prime index in S are A331912.
Numbers with exactly one prime prime index are A331915.
Numbers with exactly one distinct prime prime index are A331916.
Numbers with at most one distinct prime prime index are A331995.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[primeMS[#],_?PrimeQ]<=1&]

A331913 Lexicographically earliest sequence containing 1 and all positive integers that have exactly one distinct prime index already in the sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 26, 27, 31, 32, 39, 49, 52, 53, 58, 59, 64, 65, 67, 74, 81, 82, 83, 86, 87, 91, 94, 97, 101, 103, 104, 111, 116, 117, 121, 122, 123, 125, 127, 128, 129, 131, 141, 142, 143, 145, 146, 148, 158, 164, 167, 172, 178
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}              52: {1,1,6}          116: {1,1,10}
    2: {1}             53: {16}             117: {2,2,6}
    3: {2}             58: {1,10}           121: {5,5}
    4: {1,1}           59: {17}             122: {1,18}
    5: {3}             64: {1,1,1,1,1,1}    123: {2,13}
    7: {4}             65: {3,6}            125: {3,3,3}
    8: {1,1,1}         67: {19}             127: {31}
    9: {2,2}           74: {1,12}           128: {1,1,1,1,1,1,1}
   11: {5}             81: {2,2,2,2}        129: {2,14}
   16: {1,1,1,1}       82: {1,13}           131: {32}
   17: {7}             83: {23}             141: {2,15}
   19: {8}             86: {1,14}           142: {1,20}
   23: {9}             87: {2,10}           143: {5,6}
   25: {3,3}           91: {4,6}            145: {3,10}
   26: {1,6}           94: {1,15}           146: {1,21}
   27: {2,2,2}         97: {25}             148: {1,1,12}
   31: {11}           101: {26}             158: {1,22}
   32: {1,1,1,1,1}    103: {27}             164: {1,1,13}
   39: {2,6}          104: {1,1,1,6}        167: {39}
   49: {4,4}          111: {2,12}           172: {1,1,14}
		

Crossrefs

Contains all prime powers A000961.
Numbers S without all prime indices in S are A324694.
Numbers S without any prime indices in S are A324695.
Numbers S with at most one prime index in S are A331784.
Numbers S with exactly one prime index in S are A331785.
Numbers S with at most one distinct prime index in S are A331912.

Programs

  • Mathematica
    aQ[n_]:=n==1||Length[Select[PrimePi/@First/@FactorInteger[n],aQ]]==1;
    Select[Range[200],aQ]

A331967 Matula-Goebel numbers of lone-child-avoiding achiral rooted trees.

Original entry on oeis.org

1, 4, 8, 16, 32, 49, 64, 128, 256, 343, 361, 512, 1024, 2048, 2401, 2809, 4096, 6859, 8192, 16384, 16807, 17161, 32768, 51529, 65536, 96721, 117649, 130321, 131072, 148877, 262144, 516961, 524288, 823543, 1048576, 2097152, 2248091, 2476099, 2621161, 4194304
Offset: 1

Views

Author

Gus Wiseman, Feb 06 2020

Keywords

Comments

Lone-child-avoiding means there are no unary branchings.
In an achiral rooted tree, the branches of any given vertex are all equal.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one and all numbers of the form prime(j)^k where k > 1 and j is already in the sequence.

Examples

			The sequence of all lone-child-avoiding achiral rooted trees together with their Matula-Goebel numbers begins:
      1: o
      4: (oo)
      8: (ooo)
     16: (oooo)
     32: (ooooo)
     49: ((oo)(oo))
     64: (oooooo)
    128: (ooooooo)
    256: (oooooooo)
    343: ((oo)(oo)(oo))
    361: ((ooo)(ooo))
    512: (ooooooooo)
   1024: (oooooooooo)
   2048: (ooooooooooo)
   2401: ((oo)(oo)(oo)(oo))
   2809: ((oooo)(oooo))
   4096: (oooooooooooo)
   6859: ((ooo)(ooo)(ooo))
   8192: (ooooooooooooo)
  16384: (oooooooooooooo)
  16807: ((oo)(oo)(oo)(oo)(oo))
  17161: ((ooooo)(ooooo))
  32768: (ooooooooooooooo)
  51529: (((oo)(oo))((oo)(oo)))
  65536: (oooooooooooooooo)
  96721: ((oooooo)(oooooo))
		

Crossrefs

A subset of A025475 (nonprime prime powers).
The enumeration of these trees by vertices is A167865.
Not requiring lone-child-avoidance gives A214577.
The semi-achiral version is A320269.
The semi-lone-child-avoiding version is A331992.
Achiral rooted trees are counted by A003238.
MG-numbers of planted achiral rooted trees are A280996.
MG-numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    msQ[n_]:=n==1||!PrimeQ[n]&&PrimePowerQ[n]&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[10000],msQ]

Formula

Intersection of A214577 (achiral) and A291636 (lone-child-avoiding).

A331991 Number of semi-lone-child-avoiding achiral rooted trees with n vertices.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 5, 4, 4, 1, 7, 1, 7, 5, 6, 1, 7, 3, 7, 5, 7, 1, 13, 1, 8, 6, 6, 6, 10, 1, 9, 7, 9, 1, 15, 1, 12, 12, 8, 1, 12, 4, 13, 6, 11, 1, 15, 7, 13, 9, 9, 1, 17, 1, 15, 15, 9, 8, 21, 1, 13, 8, 16, 1, 18, 1, 12, 16, 11, 8, 21, 1
Offset: 1

Views

Author

Gus Wiseman, Feb 06 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf.
In an achiral rooted tree, the branches of any given vertex are all equal.

Examples

			The a(n) trees for n = 2, 3, 5, 7, 11, 13:
  (o)  (oo)  (oooo)    (oooooo)     (oooooooooo)        (oooooooooooo)
             ((o)(o))  ((oo)(oo))   ((oooo)(oooo))      ((ooooo)(ooooo))
                       ((o)(o)(o))  ((o)(o)(o)(o)(o))   ((ooo)(ooo)(ooo))
                                    (((o)(o))((o)(o)))  ((oo)(oo)(oo)(oo))
                                                        ((o)(o)(o)(o)(o)(o))
		

Crossrefs

Matula-Goebel numbers of these trees are A331992.
The fully lone-child-avoiding case is A167865.
The semi-achiral version is A331933.
Not requiring achirality gives A331934.
The identity tree version is A331964.
The semi-identity tree version is A331993.
Achiral rooted trees are counted by A003238.
Lone-child-avoiding semi-achiral trees are A320268.

Programs

  • Mathematica
    ab[n_]:=If[n<=2,1,Sum[ab[d],{d,Most[Divisors[n-1]]}]];
    Array[ab,100]

Formula

a(1) = a(2) = 1; a(n + 1) = Sum_{d|n, d 1.
G.f. A(x) satisfies: A(x) = x * (1 + (1/(1 + x)) * Sum_{k>=1} A(x^k)). - Ilya Gutkovskiy, Feb 25 2020
Showing 1-10 of 12 results. Next