cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A331935 Matula-Goebel numbers of semi-lone-child-avoiding rooted trees.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 14, 16, 18, 21, 24, 26, 27, 28, 32, 36, 38, 39, 42, 46, 48, 49, 52, 54, 56, 57, 63, 64, 69, 72, 74, 76, 78, 81, 84, 86, 91, 92, 96, 98, 104, 106, 108, 111, 112, 114, 117, 122, 126, 128, 129, 133, 138, 144, 146, 147, 148, 152, 156, 159
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all nonprime numbers whose prime indices already belong to the sequence, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all semi-lone-child-avoiding rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
   9: ((o)(o))
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  21: ((o)(oo))
  24: (ooo(o))
  26: (o(o(o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  39: ((o)(o(o)))
  42: (o(o)(oo))
The sequence of terms together with their prime indices begins:
    1: {}              46: {1,9}             98: {1,4,4}
    2: {1}             48: {1,1,1,1,2}      104: {1,1,1,6}
    4: {1,1}           49: {4,4}            106: {1,16}
    6: {1,2}           52: {1,1,6}          108: {1,1,2,2,2}
    8: {1,1,1}         54: {1,2,2,2}        111: {2,12}
    9: {2,2}           56: {1,1,1,4}        112: {1,1,1,1,4}
   12: {1,1,2}         57: {2,8}            114: {1,2,8}
   14: {1,4}           63: {2,2,4}          117: {2,2,6}
   16: {1,1,1,1}       64: {1,1,1,1,1,1}    122: {1,18}
   18: {1,2,2}         69: {2,9}            126: {1,2,2,4}
   21: {2,4}           72: {1,1,1,2,2}      128: {1,1,1,1,1,1,1}
   24: {1,1,1,2}       74: {1,12}           129: {2,14}
   26: {1,6}           76: {1,1,8}          133: {4,8}
   27: {2,2,2}         78: {1,2,6}          138: {1,2,9}
   28: {1,1,4}         81: {2,2,2,2}        144: {1,1,1,1,2,2}
   32: {1,1,1,1,1}     84: {1,1,2,4}        146: {1,21}
   36: {1,1,2,2}       86: {1,14}           147: {2,4,4}
   38: {1,8}           91: {4,6}            148: {1,1,12}
   39: {2,6}           92: {1,1,9}          152: {1,1,1,8}
   42: {1,2,4}         96: {1,1,1,1,1,2}    156: {1,1,2,6}
		

Crossrefs

The enumeration of these trees by leaves is A050381.
The locally disjoint version A331873.
The enumeration of these trees by nodes is A331934.
The case with at most one distinct non-leaf branch of any vertex is A331936.
Lone-child-avoiding rooted trees are counted by A001678.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    mseQ[n_]:=n==1||n==2||!PrimeQ[n]&&And@@mseQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],mseQ]

A331965 Matula-Goebel numbers of lone-child-avoiding rooted semi-identity trees.

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 56, 64, 76, 86, 106, 112, 128, 133, 152, 172, 212, 214, 224, 256, 262, 266, 301, 304, 326, 344, 371, 424, 428, 448, 512, 524, 526, 532, 602, 608, 622, 652, 688, 742, 749, 766, 817, 848, 856, 886, 896, 917, 1007, 1024, 1048, 1052
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2020

Keywords

Comments

First differs from A331683 in having 133, the Matula-Goebel number of the tree ((oo)(ooo)).
Lone-child-avoiding means there are no unary branchings.
In a semi-identity tree, the non-leaf branches of any given vertex are all distinct.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, and all composite numbers that are n times a power of two, where n is a squarefree number whose prime indices already belong to the sequence, and a prime index of n is a number m such that prime(m) divides n. [Clarified by Peter Munn and Gus Wiseman, Jun 24 2021]

Examples

			The sequence of all lone-child-avoiding rooted semi-identity trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  133: ((oo)(ooo))
  152: (ooo(ooo))
  172: (oo(o(oo)))
  212: (oo(oooo))
  214: (o(oo(oo)))
The sequence of terms together with their prime indices begins:
    1: {}                 224: {1,1,1,1,1,4}
    4: {1,1}              256: {1,1,1,1,1,1,1,1}
    8: {1,1,1}            262: {1,32}
   14: {1,4}              266: {1,4,8}
   16: {1,1,1,1}          301: {4,14}
   28: {1,1,4}            304: {1,1,1,1,8}
   32: {1,1,1,1,1}        326: {1,38}
   38: {1,8}              344: {1,1,1,14}
   56: {1,1,1,4}          371: {4,16}
   64: {1,1,1,1,1,1}      424: {1,1,1,16}
   76: {1,1,8}            428: {1,1,28}
   86: {1,14}             448: {1,1,1,1,1,1,4}
  106: {1,16}             512: {1,1,1,1,1,1,1,1,1}
  112: {1,1,1,1,4}        524: {1,1,32}
  128: {1,1,1,1,1,1,1}    526: {1,56}
  133: {4,8}              532: {1,1,4,8}
  152: {1,1,1,8}          602: {1,4,14}
  172: {1,1,14}           608: {1,1,1,1,1,8}
  212: {1,1,16}           622: {1,64}
  214: {1,28}             652: {1,1,38}
		

Crossrefs

The non-semi case is {1}.
Not requiring lone-child-avoidance gives A306202.
The locally disjoint version is A331683.
These trees are counted by A331966.
The semi-lone-child-avoiding case is A331994.
Matula-Goebel numbers of rooted identity trees are A276625.
Matula-Goebel numbers of lone-child-avoiding rooted trees are A291636.
Semi-identity trees are counted by A306200.

Programs

  • Mathematica
    csiQ[n_]:=n==1||!PrimeQ[n]&&FreeQ[FactorInteger[n],{?(#>2&),?(#>1&)}]&&And@@csiQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],csiQ]

Formula

Intersection of A291636 and A306202.

A331873 Matula-Goebel numbers of semi-lone-child-avoiding locally disjoint rooted trees.

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 14, 16, 18, 24, 26, 27, 28, 32, 36, 38, 46, 48, 49, 52, 54, 56, 64, 69, 72, 74, 76, 81, 86, 92, 96, 98, 104, 106, 108, 112, 122, 128, 138, 144, 148, 152, 161, 162, 169, 172, 178, 184, 192, 196, 202, 206, 207, 208, 212, 214, 216, 224, 243
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2020

Keywords

Comments

First differs from A331936 in having 69, the Matula-Goebel number of the tree ((o)((o)(o))).
A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.
Locally disjoint means no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all nonprime numbers whose distinct prime indices are pairwise coprime and already belong to the sequence, where a singleton is always considered to be pairwise coprime. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all semi-lone-child-avoiding locally disjoint rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
   9: ((o)(o))
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  24: (ooo(o))
  26: (o(o(o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  46: (o((o)(o)))
  48: (oooo(o))
  49: ((oo)(oo))
		

Crossrefs

Not requiring lone-child-avoidance gives A316495.
A superset of A320269.
The semi-identity tree case is A331681.
The non-semi version (i.e., not containing 2) is A331871.
These trees counted by vertices are A331872.
These trees counted by leaves are A331874.
Not requiring local disjointness gives A331935.
The identity tree case is A331937.

Programs

  • Mathematica
    msQ[n_]:=n==1||n==2||!PrimeQ[n]&&(PrimePowerQ[n]||CoprimeQ@@PrimePi/@First/@FactorInteger[n])&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],msQ]

A331936 Matula-Goebel numbers of semi-lone-child-avoiding rooted trees with at most one distinct non-leaf branch directly under any vertex (semi-achirality).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 14, 16, 18, 24, 26, 27, 28, 32, 36, 38, 46, 48, 49, 52, 54, 56, 64, 72, 74, 76, 81, 86, 92, 96, 98, 104, 106, 108, 112, 122, 128, 144, 148, 152, 162, 169, 172, 178, 184, 192, 196, 202, 206, 208, 212, 214, 216, 224, 243, 244, 256, 262, 288
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

First differs from A331873 in lacking 69, the Matula-Goebel number of the tree ((o)((o)(o))).
A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless that child is an endpoint/leaf.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of 1, 2, and all numbers equal to a power of 2 (other than 1) times a power of prime(j) for some j > 1 already in the sequence.

Examples

			The sequence of rooted trees ranked by this sequence together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
   9: ((o)(o))
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  18: (o(o)(o))
  24: (ooo(o))
  26: (o(o(o)))
  27: ((o)(o)(o))
  28: (oo(oo))
  32: (ooooo)
  36: (oo(o)(o))
  38: (o(ooo))
  46: (o((o)(o)))
  48: (oooo(o))
  49: ((oo)(oo))
The sequence of terms together with their prime indices begins:
    1: {}              52: {1,1,6}            152: {1,1,1,8}
    2: {1}             54: {1,2,2,2}          162: {1,2,2,2,2}
    4: {1,1}           56: {1,1,1,4}          169: {6,6}
    6: {1,2}           64: {1,1,1,1,1,1}      172: {1,1,14}
    8: {1,1,1}         72: {1,1,1,2,2}        178: {1,24}
    9: {2,2}           74: {1,12}             184: {1,1,1,9}
   12: {1,1,2}         76: {1,1,8}            192: {1,1,1,1,1,1,2}
   14: {1,4}           81: {2,2,2,2}          196: {1,1,4,4}
   16: {1,1,1,1}       86: {1,14}             202: {1,26}
   18: {1,2,2}         92: {1,1,9}            206: {1,27}
   24: {1,1,1,2}       96: {1,1,1,1,1,2}      208: {1,1,1,1,6}
   26: {1,6}           98: {1,4,4}            212: {1,1,16}
   27: {2,2,2}        104: {1,1,1,6}          214: {1,28}
   28: {1,1,4}        106: {1,16}             216: {1,1,1,2,2,2}
   32: {1,1,1,1,1}    108: {1,1,2,2,2}        224: {1,1,1,1,1,4}
   36: {1,1,2,2}      112: {1,1,1,1,4}        243: {2,2,2,2,2}
   38: {1,8}          122: {1,18}             244: {1,1,18}
   46: {1,9}          128: {1,1,1,1,1,1,1}    256: {1,1,1,1,1,1,1,1}
   48: {1,1,1,1,2}    144: {1,1,1,1,2,2}      262: {1,32}
   49: {4,4}          148: {1,1,12}           288: {1,1,1,1,1,2,2}
		

Crossrefs

A superset of A000079.
The non-lone-child-avoiding version is A320230.
The non-semi version is A320269.
These trees are counted by A331933.
Not requiring semi-achirality gives A331935.
The fully-achiral case is A331992.
Achiral trees are counted by A003238.
Numbers with at most one distinct odd prime factor are A070776.
Matula-Goebel numbers of achiral rooted trees are A214577.
Matula-Goebel numbers of semi-identity trees are A306202.
Numbers S with at most one distinct prime index in S are A331912.

Programs

  • Mathematica
    msQ[n_]:=n<=2||!PrimeQ[n]&&Length[DeleteCases[FactorInteger[n],{2,_}]]<=1&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],msQ]

Formula

Intersection of A320230 and A331935.

A331963 Matula-Goebel numbers of semi-lone-child-avoiding rooted identity trees.

Original entry on oeis.org

1, 2, 6, 26, 39, 78, 202, 303, 334, 501, 606, 794, 1002, 1191, 1313, 2171, 2382, 2462, 2626, 3693, 3939, 3998, 4342, 4486, 5161, 5997, 6513, 6729, 7162, 7386, 7878, 8914, 10322, 10743, 11994, 12178, 13026, 13371, 13458, 15483, 15866, 16003, 16867, 18267, 19286
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf. It is an identity tree if the branches under any given vertex are all distinct.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all nonprime squarefree numbers whose prime indices already belong to the sequence, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all semi-lone-child-avoiding rooted identity trees together with their Matula-Goebel numbers begins:
    1: o
    2: (o)
    6: (o(o))
   26: (o(o(o)))
   39: ((o)(o(o)))
   78: (o(o)(o(o)))
  202: (o(o(o(o))))
  303: ((o)(o(o(o))))
  334: (o((o)(o(o))))
  501: ((o)((o)(o(o))))
  606: (o(o)(o(o(o))))
  794: (o(o(o)(o(o))))
		

Crossrefs

A subset of A276625 (MG-numbers of identity trees).
Not requiring an identity tree gives A331935.
The locally disjoint version is A331937.
These trees are counted by A331964.
The semi-identity case is A331994.
Matula-Goebel numbers of identity trees are A276625.
Matula-Goebel numbers of lone-child-avoiding rooted semi-identity trees are A331965.

Programs

  • Mathematica
    msiQ[n_]:=n==1||n==2||!PrimeQ[n]&&SquareFreeQ[n]&&And@@msiQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[1000],msiQ]

Formula

Intersection of A276625 (identity trees) and A331935 (semi-lone-child-avoiding).

A331933 Number of semi-lone-child-avoiding rooted trees with at most one distinct non-leaf branch directly under any vertex.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 12, 18, 33, 52, 90, 142, 242, 384, 639, 1028, 1688, 2716, 4445, 7161, 11665, 18839, 30595, 49434, 80199, 129637, 210079, 339750, 550228, 889978, 1440909, 2330887, 3772845, 6103823, 9878357, 15982196, 25863454, 41845650, 67713550, 109559443
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2020

Keywords

Comments

A rooted tree is semi-lone-child-avoiding if there are no vertices with exactly one child unless the child is an endpoint/leaf.

Examples

			The a(1) = 1 through a(8) = 18 trees:
  o  (o)  (oo)  (ooo)   (oooo)    (ooooo)    (oooooo)
                (o(o))  (o(oo))   (o(ooo))   (o(oooo))
                        (oo(o))   (oo(oo))   (oo(ooo))
                        ((o)(o))  (ooo(o))   (ooo(oo))
                                  (o(o)(o))  (oooo(o))
                                  (o(o(o)))  ((oo)(oo))
                                             (o(o(oo)))
                                             (o(oo(o)))
                                             (oo(o)(o))
                                             (oo(o(o)))
                                             ((o)(o)(o))
                                             (o((o)(o)))
		

Crossrefs

Not requiring lone-child-avoidance gives A320222.
The non-semi version is A320268.
Matula-Goebel numbers of these trees are A331936.
Achiral trees are A003238.
Semi-identity trees are A306200.
Numbers S with at most one distinct prime index in S are A331912.
Semi-lone-child-avoiding rooted trees are A331934.

Programs

  • Mathematica
    sseo[n_]:=Switch[n,1,{{}},2,{{{}}},_,Join@@Function[c,Select[Union[Sort/@Tuples[sseo/@c]],Length[Union[DeleteCases[#,{}]]]<=1&]]/@Rest[IntegerPartitions[n-1]]];
    Table[Length[sseo[n]],{n,10}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + sum(i=2, n-2, ((n-1)\i)*v[i])); v} \\ Andrew Howroyd, Feb 09 2020

Formula

a(n) = 1 + Sum_{i=2..n-2} floor((n-1)/i)*a(i). - Andrew Howroyd, Feb 09 2020

Extensions

Terms a(31) and beyond from Andrew Howroyd, Feb 09 2020

A331871 Matula-Goebel numbers of lone-child-avoiding locally disjoint rooted trees.

Original entry on oeis.org

1, 4, 8, 14, 16, 28, 32, 38, 49, 56, 64, 76, 86, 98, 106, 112, 128, 152, 172, 196, 212, 214, 224, 256, 262, 304, 326, 343, 344, 361, 392, 424, 428, 448, 454, 512, 524, 526, 608, 622, 652, 686, 688, 722, 766, 784, 848, 856, 886, 896, 908, 1024, 1042, 1048, 1052
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2020

Keywords

Comments

First differs from A320269 in having 1589, the Matula-Goebel number of the tree ((oo)((oo)(oo))).
First differs from A331683 in having 49.
A rooted tree is locally disjoint if no child of any vertex has branches overlapping the branches of any other (inequivalent) child of the same vertex.
Lone-child-avoiding means there are no unary branchings.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one and all nonprime numbers whose distinct prime indices are pairwise coprime and already belong to the sequence, where a singleton is always considered to be pairwise coprime. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all lone-child-avoiding locally disjoint rooted trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   14: (o(oo))
   16: (oooo)
   28: (oo(oo))
   32: (ooooo)
   38: (o(ooo))
   49: ((oo)(oo))
   56: (ooo(oo))
   64: (oooooo)
   76: (oo(ooo))
   86: (o(o(oo)))
   98: (o(oo)(oo))
  106: (o(oooo))
  112: (oooo(oo))
  128: (ooooooo)
  152: (ooo(ooo))
  172: (oo(o(oo)))
  196: (oo(oo)(oo))
The sequence of terms together with their prime indices begins:
     1: {}                  212: {1,1,16}
     4: {1,1}               214: {1,28}
     8: {1,1,1}             224: {1,1,1,1,1,4}
    14: {1,4}               256: {1,1,1,1,1,1,1,1}
    16: {1,1,1,1}           262: {1,32}
    28: {1,1,4}             304: {1,1,1,1,8}
    32: {1,1,1,1,1}         326: {1,38}
    38: {1,8}               343: {4,4,4}
    49: {4,4}               344: {1,1,1,14}
    56: {1,1,1,4}           361: {8,8}
    64: {1,1,1,1,1,1}       392: {1,1,1,4,4}
    76: {1,1,8}             424: {1,1,1,16}
    86: {1,14}              428: {1,1,28}
    98: {1,4,4}             448: {1,1,1,1,1,1,4}
   106: {1,16}              454: {1,49}
   112: {1,1,1,1,4}         512: {1,1,1,1,1,1,1,1,1}
   128: {1,1,1,1,1,1,1}     524: {1,1,32}
   152: {1,1,1,8}           526: {1,56}
   172: {1,1,14}            608: {1,1,1,1,1,8}
   196: {1,1,4,4}           622: {1,64}
		

Crossrefs

Not requiring local disjointness gives A291636.
Not requiring lone-child avoidance gives A316495.
A superset of A320269.
These trees are counted by A331680.
The semi-identity tree version is A331683.
The version containing 2 is A331873.

Programs

  • Mathematica
    msQ[n_]:=n==1||!PrimeQ[n]&&(PrimePowerQ[n]||CoprimeQ@@PrimePi/@First/@FactorInteger[n])&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[1000],msQ]

Formula

Intersection of A291636 and A316495.

A320268 Number of unlabeled series-reduced rooted trees with n nodes where the non-leaf branches directly under any given node are all equal.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 6, 9, 16, 26, 44, 70, 119, 189, 314, 506, 830, 1336, 2186, 3522, 5737, 9266, 15047, 24313, 39444, 63759, 103322, 167098, 270616, 437714, 708676, 1146390, 1855582, 3002017, 4858429, 7860454, 12720310, 20580764, 33303260, 53884144, 87190964
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2018

Keywords

Comments

This is a weaker condition than achirality (cf. A167865).
A rooted tree is series-reduced if every non-leaf node has at least two branches.

Examples

			The a(3) = 1 through a(8) = 9 rooted trees:
  (oo)  (ooo)  (oooo)   (ooooo)   (oooooo)    (ooooooo)
               (o(oo))  (o(ooo))  (o(oooo))   (o(ooooo))
                        (oo(oo))  (oo(ooo))   (oo(oooo))
                                  (ooo(oo))   (ooo(ooo))
                                  ((oo)(oo))  (oooo(oo))
                                  (o(o(oo)))  (o(o(ooo)))
                                              (o(oo)(oo))
                                              (o(oo(oo)))
                                              (oo(o(oo)))
		

Crossrefs

Programs

  • Mathematica
    saum[n_]:=Sum[If[DeleteCases[ptn,1]=={},1,saum[DeleteCases[ptn,1][[1]]]],{ptn,Select[IntegerPartitions[n-1],And[Length[#]!=1,SameQ@@DeleteCases[#,1]]&]}];
    Array[saum,20]
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=3, n, v[n] = 1 + sum(k=2, n-2, (n-1)\k*v[k])); v} \\ Andrew Howroyd, Oct 26 2018

Formula

a(1) = 1; a(2) = 0; a(n > 2) = 1 + Sum_{k = 2..n-2} floor((n-1)/k) * a(k).

A331967 Matula-Goebel numbers of lone-child-avoiding achiral rooted trees.

Original entry on oeis.org

1, 4, 8, 16, 32, 49, 64, 128, 256, 343, 361, 512, 1024, 2048, 2401, 2809, 4096, 6859, 8192, 16384, 16807, 17161, 32768, 51529, 65536, 96721, 117649, 130321, 131072, 148877, 262144, 516961, 524288, 823543, 1048576, 2097152, 2248091, 2476099, 2621161, 4194304
Offset: 1

Views

Author

Gus Wiseman, Feb 06 2020

Keywords

Comments

Lone-child-avoiding means there are no unary branchings.
In an achiral rooted tree, the branches of any given vertex are all equal.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one and all numbers of the form prime(j)^k where k > 1 and j is already in the sequence.

Examples

			The sequence of all lone-child-avoiding achiral rooted trees together with their Matula-Goebel numbers begins:
      1: o
      4: (oo)
      8: (ooo)
     16: (oooo)
     32: (ooooo)
     49: ((oo)(oo))
     64: (oooooo)
    128: (ooooooo)
    256: (oooooooo)
    343: ((oo)(oo)(oo))
    361: ((ooo)(ooo))
    512: (ooooooooo)
   1024: (oooooooooo)
   2048: (ooooooooooo)
   2401: ((oo)(oo)(oo)(oo))
   2809: ((oooo)(oooo))
   4096: (oooooooooooo)
   6859: ((ooo)(ooo)(ooo))
   8192: (ooooooooooooo)
  16384: (oooooooooooooo)
  16807: ((oo)(oo)(oo)(oo)(oo))
  17161: ((ooooo)(ooooo))
  32768: (ooooooooooooooo)
  51529: (((oo)(oo))((oo)(oo)))
  65536: (oooooooooooooooo)
  96721: ((oooooo)(oooooo))
		

Crossrefs

A subset of A025475 (nonprime prime powers).
The enumeration of these trees by vertices is A167865.
Not requiring lone-child-avoidance gives A214577.
The semi-achiral version is A320269.
The semi-lone-child-avoiding version is A331992.
Achiral rooted trees are counted by A003238.
MG-numbers of planted achiral rooted trees are A280996.
MG-numbers of lone-child-avoiding rooted trees are A291636.

Programs

  • Mathematica
    msQ[n_]:=n==1||!PrimeQ[n]&&PrimePowerQ[n]&&And@@msQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[10000],msQ]

Formula

Intersection of A214577 (achiral) and A291636 (lone-child-avoiding).

A331994 Matula-Goebel numbers of semi-lone-child-avoiding rooted semi-identity trees.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 14, 16, 21, 24, 26, 28, 32, 38, 39, 42, 48, 52, 56, 57, 64, 74, 76, 78, 84, 86, 91, 96, 104, 106, 111, 112, 114, 128, 129, 133, 146, 148, 152, 156, 159, 168, 172, 178, 182, 192, 202, 208, 212, 214, 219, 222, 224, 228, 247, 256, 258, 259, 262
Offset: 1

Views

Author

Gus Wiseman, Feb 05 2020

Keywords

Comments

Semi-lone-child-avoiding means there are no vertices with exactly one child unless that child is an endpoint/leaf.
In a semi-identity tree, the non-leaf branches of any given vertex are distinct.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
Consists of one, two, and all numbers that can be written as a power of two (other than 2) times a squarefree number whose prime indices already belong to the sequence, where a prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of all semi-lone-child-avoiding rooted semi-identity trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   4: (oo)
   6: (o(o))
   8: (ooo)
  12: (oo(o))
  14: (o(oo))
  16: (oooo)
  21: ((o)(oo))
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  32: (ooooo)
  38: (o(ooo))
  39: ((o)(o(o)))
  42: (o(o)(oo))
  48: (oooo(o))
  52: (oo(o(o)))
  56: (ooo(oo))
  57: ((o)(ooo))
The sequence of terms together with their prime indices begins:
    1: {}              64: {1,1,1,1,1,1}      159: {2,16}
    2: {1}             74: {1,12}             168: {1,1,1,2,4}
    4: {1,1}           76: {1,1,8}            172: {1,1,14}
    6: {1,2}           78: {1,2,6}            178: {1,24}
    8: {1,1,1}         84: {1,1,2,4}          182: {1,4,6}
   12: {1,1,2}         86: {1,14}             192: {1,1,1,1,1,1,2}
   14: {1,4}           91: {4,6}              202: {1,26}
   16: {1,1,1,1}       96: {1,1,1,1,1,2}      208: {1,1,1,1,6}
   21: {2,4}          104: {1,1,1,6}          212: {1,1,16}
   24: {1,1,1,2}      106: {1,16}             214: {1,28}
   26: {1,6}          111: {2,12}             219: {2,21}
   28: {1,1,4}        112: {1,1,1,1,4}        222: {1,2,12}
   32: {1,1,1,1,1}    114: {1,2,8}            224: {1,1,1,1,1,4}
   38: {1,8}          128: {1,1,1,1,1,1,1}    228: {1,1,2,8}
   39: {2,6}          129: {2,14}             247: {6,8}
   42: {1,2,4}        133: {4,8}              256: {1,1,1,1,1,1,1,1}
   48: {1,1,1,1,2}    146: {1,21}             258: {1,2,14}
   52: {1,1,6}        148: {1,1,12}           259: {4,12}
   56: {1,1,1,4}      152: {1,1,1,8}          262: {1,32}
   57: {2,8}          156: {1,1,2,6}          266: {1,4,8}
		

Crossrefs

The locally disjoint version is A331681.
The enumeration of these trees by vertices is A331993.
Semi-identity trees are A306200.
MG-numbers of rooted identity trees are A276625.
MG-numbers of lone-child-avoiding rooted identity trees are {1}.
MG-numbers of lone-child-avoiding rooted trees are A291636.
MG-numbers of semi-identity trees are A306202.
MG-numbers of semi-lone-child-avoiding rooted trees are A331935.
MG-numbers of semi-lone-child-avoiding rooted identity trees are A331963.
MG-numbers of lone-child-avoiding rooted semi-identity trees are A331965.

Programs

  • Mathematica
    scsiQ[n_]:=n==1||n==2||!PrimeQ[n]&&FreeQ[FactorInteger[n],{?(#>2&),?(#>1&)}]&&And@@scsiQ/@PrimePi/@First/@FactorInteger[n];
    Select[Range[100],scsiQ]

Formula

Intersection of A306202 and A331935.
Showing 1-10 of 11 results. Next