cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 95 results. Next

A002033 Number of perfect partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 4, 8, 1, 13, 1, 16, 3, 3, 3, 26, 1, 3, 3, 20, 1, 13, 1, 8, 8, 3, 1, 48, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 44, 1, 3, 8, 32, 3, 13, 1, 8, 3, 13, 1, 76, 1, 3, 8, 8, 3, 13, 1, 48, 8, 3, 1, 44, 3, 3, 3, 20, 1, 44, 3, 8, 3, 3, 3, 112
Offset: 0

Views

Author

Keywords

Comments

A perfect partition of n is one which contains just one partition of every number less than n when repeated parts are regarded as indistinguishable. Thus 1^n is a perfect partition for every n; and for n = 7, 4 1^3, 4 2 1, 2^3 1 and 1^7 are all perfect partitions. [Riordan]
Also number of ordered factorizations of n+1, see A074206.
Also number of gozinta chains from 1 to n (see A034776). - David W. Wilson
a(n) is the permanent of the n X n matrix with (i,j) entry = 1 if j|i+1 and = 0 otherwise. For n=3 the matrix is {{1, 1, 0}, {1, 0, 1}, {1, 1, 0}} with permanent = 2. - David Callan, Oct 19 2005
Appears to be the number of permutations that contribute to the determinant that gives the Moebius function. Verified up to a(9). - Mats Granvik, Sep 13 2008
Dirichlet inverse of A153881 (assuming offset 1). - Mats Granvik, Jan 03 2009
Equals row sums of triangle A176917. - Gary W. Adamson, Apr 28 2010
A partition is perfect iff it is complete (A126796) and knapsack (A108917). - Gus Wiseman, Jun 22 2016
a(n) is also the number of series-reduced planted achiral trees with n + 1 unlabeled leaves, where a rooted tree is series-reduced if all terminal subtrees have at least two branches, and achiral if all branches directly under any given node are equal. Also Moebius transform of A067824. - Gus Wiseman, Jul 13 2018

Examples

			n=0: 1 (the empty partition)
n=1: 1 (1)
n=2: 1 (11)
n=3: 2 (21, 111)
n=4: 1 (1111)
n=5: 3 (311, 221, 11111)
n=6: 1 (111111)
n=7: 4 (4111, 421, 2221, 1111111)
From _Gus Wiseman_, Jul 13 2018: (Start)
The a(11) = 8 series-reduced planted achiral trees with 12 unlabeled leaves:
  (oooooooooooo)
  ((oooooo)(oooooo))
  ((oooo)(oooo)(oooo))
  ((ooo)(ooo)(ooo)(ooo))
  ((oo)(oo)(oo)(oo)(oo)(oo))
  (((ooo)(ooo))((ooo)(ooo)))
  (((oo)(oo)(oo))((oo)(oo)(oo)))
  (((oo)(oo))((oo)(oo))((oo)(oo)))
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126, see #27.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 141.
  • D. E. Knuth, The Art of Computer Programming, Pre-Fasc. 3b, Sect. 7.2.1.5, no. 67, p. 25.
  • P. A. MacMahon, The theory of perfect partitions and the compositions of multipartite numbers, Messenger Math., 20 (1891), 103-119.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 123-124.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Same as A074206, up to the offset and initial term there.
Cf. A176917.
For parity see A008966.

Programs

  • Maple
    a := array(1..150): for k from 1 to 150 do a[k] := 0 od: a[1] := 1: for j from 2 to 150 do for m from 1 to j-1 do if j mod m = 0 then a[j] := a[j]+a[m] fi: od: od: for k from 1 to 150 do printf(`%d,`,a[k]) od: # James Sellers, Dec 07 2000
    # alternative
    A002033 := proc(n)
        option remember;
        local a;
        if n <= 2 then
            return 1;
        else
            a := 0 ;
            for i from 0 to n-1 do
                if modp(n+1,i+1) = 0 then
                    a := a+procname(i);
                end if;
            end do:
        end if;
        a ;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := a[n] = a /@ Most[Divisors[n]] // Total; a /@ Range[96]  (* Jean-François Alcover, Apr 06 2011, updated Sep 23 2014. NOTE: This produces A074206(n) = a(n-1). - M. F. Hasler, Oct 12 2018 *)
  • PARI
    A002033(n) = if(n,sumdiv(n+1,i,if(i<=n,A002033(i-1))),1) \\ Michael B. Porter, Nov 01 2009, corrected by M. F. Hasler, Oct 12 2018
    
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def A002033(n):
        if n <= 1:
            return 1
        return sum(A002033(i-1) for i in divisors(n+1,generator=True) if i <= n) # Chai Wah Wu, Jan 12 2022

Formula

From David Wasserman, Nov 14 2006: (Start)
a(n-1) = Sum_{i|d, i < n} a(i-1).
a(p^k-1) = 2^(k-1).
a(n-1) = A067824(n)/2 for n > 1.
a(A122408(n)-1) = A122408(n)/2. (End)
a(A025487(n)-1) = A050324(n). - R. J. Mathar, May 26 2017
a(n) = (A253249(n+1)+1)/4, n > 0. - Geoffrey Critzer, Aug 19 2020

Extensions

Edited by M. F. Hasler, Oct 12 2018

A074206 Kalmár's [Kalmar's] problem: number of ordered factorizations of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 4, 8, 1, 13, 1, 16, 3, 3, 3, 26, 1, 3, 3, 20, 1, 13, 1, 8, 8, 3, 1, 48, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 44, 1, 3, 8, 32, 3, 13, 1, 8, 3, 13, 1, 76, 1, 3, 8, 8, 3, 13, 1, 48, 8, 3, 1, 44, 3, 3, 3, 20, 1, 44, 3, 8, 3, 3, 3, 112
Offset: 0

Views

Author

N. J. A. Sloane, Apr 29 2003

Keywords

Comments

a(0)=0, a(1)=1; thereafter a(n) is the number of ordered factorizations of n as a product of integers greater than 1.
Kalmár (1931) seems to be the earliest reference that mentions this sequence (as opposed to A002033). - N. J. A. Sloane, May 05 2016
a(n) is the permanent of the n-1 X n-1 matrix A with (i,j) entry = 1 if j|i+1 and = 0 otherwise. This is because ordered factorizations correspond to nonzero elementary products in the permanent. For example, with n=6, 3*2 -> 1,3,6 [partial products] -> 6,3,1 [reverse list] -> (6,3)(3,1) [partition into pairs with offset 1] -> (5,3)(2,1) [decrement first entry] -> (5,3)(2,1)(1,2)(3,4)(4,5) [append pairs (i,i+1) to get a permutation] -> elementary product A(1,2)A(2,1)A(3,4)A(4,5)A(5,3). - David Callan, Oct 19 2005
This sequence is important in describing the amount of energy in all wave structures in the Universe according to harmonics theory. - Ray Tomes (ray(AT)tomes.biz), Jul 22 2007
a(n) appears to be the number of permutation matrices contributing to the Moebius function. See A008683 for more information. Also a(n) appears to be the Moebius transform of A067824. Furthermore it appears that except for the first term a(n)=A067824(n)*(1/2). Are there other sequences such that when the Moebius transform is applied, the new sequence is also a constant factor times the starting sequence? - Mats Granvik, Jan 01 2009
Numbers divisible by n distinct primes appear to have ordered factorization values that can be found in an n-dimensional summatory Pascal triangle. For example, the ordered factorization values for numbers divisible by two distinct primes can be found in table A059576. - Mats Granvik, Sep 06 2009
Inverse Mobius transform of A174725 and also except for the first term, inverse Mobius transform of A174726. - Mats Granvik, Mar 28 2010
a(n) is a lower bound on the worst-case number of solutions to the probed partial digest problem for n fragments of DNA; see the Newberg & Naor reference, below. - Lee A. Newberg, Aug 02 2011
All integers greater than 1 are perfect numbers over this sequence (for definition of A-perfect numbers, see comment to A175522). - Vladimir Shevelev, Aug 03 2011
If n is squarefree, then a(n) = A000670(A001221(n)) = A000670(A001222(n)). - Vladimir Shevelev and Franklin T. Adams-Watters, Aug 05 2011
A034776 lists the values taken by this sequence. - Robert G. Wilson v, Jun 02 2012
From Gus Wiseman, Aug 25 2020: (Start)
Also the number of strict chains of divisors from n to 1. For example, the a(n) chains for n = 1, 2, 4, 6, 8, 12, 30 are:
1 2/1 4/1 6/1 8/1 12/1 30/1
4/2/1 6/2/1 8/2/1 12/2/1 30/2/1
6/3/1 8/4/1 12/3/1 30/3/1
8/4/2/1 12/4/1 30/5/1
12/6/1 30/6/1
12/4/2/1 30/10/1
12/6/2/1 30/15/1
12/6/3/1 30/6/2/1
30/6/3/1
30/10/2/1
30/10/5/1
30/15/3/1
30/15/5/1
(End)
a(n) is also the number of ways to tile a strip of length log(n) with tiles having lengths {log(k) : k>=2}. - David Bevan, Jan 07 2025

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + x^7 + 4*x^8 + 2*x^9 + 3*x^10 + ...
Number of ordered factorizations of 8 is 4: 8 = 2*4 = 4*2 = 2*2*2.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126, see #27.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 141.
  • Kalmár, Laszlo, A "factorisatio numerorum" problemajarol [Hungarian], Matemat. Fizik. Lapok, 38 (1931), 1-15.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 124.

Crossrefs

Apart from initial term, same as A002033.
a(A002110) = A000670, row sums of A251683.
A173382 (and A025523) gives partial sums.
A124433 has these as unsigned row sums.
A334996 has these as row sums.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A008480 counts ordered prime factorizations.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A253249 counts strict chains of divisors.

Programs

  • Haskell
    a074206 n | n <= 1 = n
    | otherwise = 1 + (sum $ map (a074206 . (div n)) $
    tail $ a027751_row n)
    -- Reinhard Zumkeller, Oct 01 2012
    
  • Maple
    a := array(1..150): for k from 1 to 150 do a[k] := 0 od: a[1] := 1: for j from 2 to 150 do for m from 1 to j-1 do if j mod m = 0 then a[j] := a[j]+a[m] fi: od: od: for k from 1 to 150 do printf(`%d,`,a[k]) od: # James Sellers, Dec 07 2000
    A074206:= proc(n) option remember; if n > 1 then `+`(op(apply(A074206, numtheory[divisors](n)[1..-2]))) else n fi end: # M. F. Hasler, Oct 12 2018
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = a /@ Most[Divisors[n]] // Total; a /@ Range[20000] (* N. J. A. Sloane, May 04 2016, based on program in A002033 *)
    ccc[n_]:=Switch[n,0,{},1,{{1}},,Join@@Table[Prepend[#,n]&/@ccc[d],{d,Most[Divisors[n]]}]]; Table[Length[ccc[n]],{n,0,100}] (* _Gus Wiseman, Aug 25 2020 *)
  • PARI
    A=vector(100);A[1]=1; for(n=2,#A,A[n]=1+sumdiv(n,d,A[d])); A/=2; A[1]=1; concat(0,A) \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    {a(n) = if( n<2, n>0, my(A = divisors(n)); sum(k=1, #A-1, a(A[k])))}; /* Michael Somos, Dec 26 2016 */
    
  • PARI
    A074206(n)=if(n>1, sumdiv(n, i, if(iA074206(i))),n) \\ M. F. Hasler, Oct 12 2018
    
  • PARI
    A74206=[1]; A074206(n)={if(#A74206A074206(i)))} \\ Use memoization for computing many values. - M. F. Hasler, Oct 12 2018
    
  • PARI
    first(n) = {my(res = vector(n, i, 1)); for(i = 2, n, for(j = 2, n \ i, res[i*j] += res[i])); concat(0, res)} \\ David A. Corneth, Oct 13 2018
    
  • PARI
    first(n) = {my(res = vector(n, i, 1)); for(i = 2, n, d = divisors(i); res[i] += sum(j = 1, #d-1, res[d[j]])); concat(0, res)} \\ somewhat faster than progs above for finding first terms of n. \\ David A. Corneth, Oct 12 2018
    
  • PARI
    a(n)={if(!n, 0, my(sig=factor(n)[,2], m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k))))} \\ Andrew Howroyd, Aug 30 2020
    
  • Python
    from math import prod
    from functools import lru_cache
    from sympy import divisors, factorint, prime
    @lru_cache(maxsize=None)
    def A074206(n): return sum(A074206(d) for d in divisors(prod(prime(i+1)**e for i,e in enumerate(sorted(factorint(n).values(),reverse=True))),generator=True,proper=True)) if n > 1 else n # Chai Wah Wu, Sep 16 2022
  • SageMath
    @cached_function
    def minus_mu(n):
        if n < 2: return n
        return sum(minus_mu(d) for d in divisors(n)[:-1])
    # Note that changing the sign of the sum gives the Möbius function A008683.
    print([minus_mu(n) for n in (0..96)]) # Peter Luschny, Dec 26 2016
    

Formula

With different offset: a(n) = sum of all a(i) such that i divides n and i < n. - Clark Kimberling
a(p^k) = 2^(k-1) if k>0 and p is a prime.
Dirichlet g.f.: 1/(2-zeta(s)). - Herbert S. Wilf, Apr 29 2003
a(n) = A067824(n)/2 for n>1; a(A122408(n)) = A122408(n)/2. - Reinhard Zumkeller, Sep 03 2006
If p,q,r,... are distinct primes, then a(p*q)=3, a(p^2*q)=8, a(p*q*r)=13, a(p^3*q)=20, etc. - Vladimir Shevelev, Aug 03 2011 [corrected by Charles R Greathouse IV, Jun 02 2012]
a(0) = 0, a(1) = 1; a(n) = [x^n] Sum_{k=1..n-1} a(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Dec 11 2017
a(n) = a(A046523(n)); a(A025487(n)) = A050324(n): a(n) depends only on the nonzero exponents in the prime factorization of n, more precisely prime signature of n, cf. A124010 and A320390. - M. F. Hasler, Oct 12 2018
a(n) = A000670(A001221(n)) for squarefree n. In particular a(A002110(n)) = A000670(n). - Amiram Eldar, May 13 2019
a(n) = A050369(n)/n, for n>=1. - Ridouane Oudra, Aug 31 2019
a(n) = A361665(A181819(n)). - Pontus von Brömssen, Mar 25 2023
From Ridouane Oudra, Nov 02 2023: (Start)
If p,q are distinct primes, and n,m>0 then we have:
a(p^n*q^m) = Sum_{k=0..min(n,m)} 2^(n+m-k-1)*binomial(n,k)*binomial(m,k);
More generally: let tau[k](n) denote the number of ordered factorizations of n as a product of k terms, also named the k-th Piltz function (see A007425), then we have for n>1:
a(n) = Sum_{j=1..bigomega(n)} Sum_{k=1..j} (-1)^(j-k)*binomial(j,k)*tau[k](n), or
a(n) = Sum_{j=1..bigomega(n)} Sum_{k=0..j-1} (-1)^k*binomial(j,k)*tau[j-k](n). (End)

Extensions

Originally this sequence was merged with A002033, the number of perfect partitions. Herbert S. Wilf suggested that it warrants an entry of its own.

A067824 a(1) = 1; for n > 1, a(n) = 1 + Sum_{0 < d < n, d|n} a(d).

Original entry on oeis.org

1, 2, 2, 4, 2, 6, 2, 8, 4, 6, 2, 16, 2, 6, 6, 16, 2, 16, 2, 16, 6, 6, 2, 40, 4, 6, 8, 16, 2, 26, 2, 32, 6, 6, 6, 52, 2, 6, 6, 40, 2, 26, 2, 16, 16, 6, 2, 96, 4, 16, 6, 16, 2, 40, 6, 40, 6, 6, 2, 88, 2, 6, 16, 64, 6, 26, 2, 16, 6, 26, 2, 152, 2, 6, 16, 16, 6, 26, 2, 96, 16, 6, 2, 88, 6, 6, 6, 40, 2, 88, 6, 16, 6, 6, 6, 224, 2, 16, 16, 52
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 08 2002

Keywords

Comments

By a result of Karhumaki and Lifshits, this is also the number of polynomials p(x) with coefficients in {0,1} that divide x^n-1 and such that (x^n-1)/ {(x-1)p(x)} has all coefficients in {0,1}.
The number of tiles of a discrete interval of length n (an interval of Z). - Eric H. Rivals (rivals(AT)lirmm.fr), Mar 13 2007
Bodini and Rivals proved this is the number of tiles of a discrete interval of length n and also is the number (A107067) of polynomials p(x) with coefficients in {0,1} that divide x^n-1 and such that (x^n-1)/ {(x-1)p(x)} has all coefficients in {0,1} (Bodini, Rivals, 2006). This structure of such tiles is also known as Krasner's factorization (Krasner and Ranulac, 1937). The proof also gives an algorithm to recognize if a set is a tile in optimal time and in this case, to compute the smallest interval it can tile (Bodini, Rivals, 2006). - Eric H. Rivals (rivals(AT)lirmm.fr), Mar 13 2007
Number of lone-child-avoiding rooted achiral (or generalized Bethe) trees with positive integer leaves summing to n, where a rooted tree is lone-child-avoiding if all terminal subtrees have at least two branches, and achiral if all branches directly under any given node are equal. For example, the a(6) = 6 trees are 6, (111111), (222), ((11)(11)(11)), (33), ((111)(111)). - Gus Wiseman, Jul 13 2018. Updated Aug 22 2020.
From Gus Wiseman, Aug 20 2020: (Start)
Also the number of strict chains of divisors starting with n. For example, the a(n) chains for n = 1, 2, 4, 6, 8, 12 are:
1 2 4 6 8 12
2/1 4/1 6/1 8/1 12/1
4/2 6/2 8/2 12/2
4/2/1 6/3 8/4 12/3
6/2/1 8/2/1 12/4
6/3/1 8/4/1 12/6
8/4/2 12/2/1
8/4/2/1 12/3/1
12/4/1
12/4/2
12/6/1
12/6/2
12/6/3
12/4/2/1
12/6/2/1
12/6/3/1
(End)
a(n) is the number of chains including n of the divisor lattice of divisors of n, which is to say, a(n) is the number of (d_1,d_2,...,d_k) such that d_1 < d_2 < ... < d_k = n and d_i divides d_{i+1} for 1 <= i <= k-1. Using this definition, the recurrence a(n) = 1 + Sum_{0 < d < n, d|n} a(d) is evident by enumerating the preceding element of n in the chains. If we count instead the chains whose LCM of members is n, then a(1) would be 2 because the empty chain is included, and we would obtain 2*A074206(n). - Jianing Song, Aug 21 2024

Examples

			a(12) = 1 + a(6) + a(4) + a(3) + a(2) + a(1)
= 1+(1+a(3)+a(2)+a(1))+(1+a(2)+a(1))+(1+a(1))+(1+a(1))+(1)
= 1+(1+(1+a(1))+(1+a(1))+1)+(1+(1+a(1))+1)+(1+1)+(1+1)+(1)
= 1+(1+(1+1)+(1+1)+1)+(1+(1+1)+1)+(1+1)+(1+1)+(1)
= 1 + 6 + 4 + 2 + 2 + 1 = 16.
		

References

  • Olivier Bodini and Eric Rivals. Tiling an Interval of the Discrete Line. In M. Lewenstein and G. Valiente, editors, Proc. of the 17th Annual Symposium on Combinatorial Pattern Matching (CPM), volume 4009 of Lecture Notes in Computer Science, pages 117-128. Springer Verlag, 2006.
  • Juhani Karhumaki, Yury Lifshits and Wojciech Rytter, Tiling Periodicity, in Combinatorial Pattern Matching, Lecture Notes in Computer Science, Volume 4580/2007, Springer-Verlag.

Crossrefs

Cf. A122408 (fixed points).
Inverse Möbius transform of A074206.
A001055 counts factorizations.
A008480 counts maximal chains of divisors starting with n.
A074206 counts chains of divisors from n to 1.
A253249 counts nonempty chains of divisors.
A337070 counts chains of divisors starting with A006939(n).
A337071 counts chains of divisors starting with n!.
A337256 counts chains of divisors.
Cf. A001221, A001222, A002033, A124010, A337074, A337105, A378223, A378225 (Dirichlet inverse).

Programs

  • Haskell
    a067824 n = 1 + sum (map a067824 [d | d <- [1..n-1], mod n d == 0])
    -- Reinhard Zumkeller, Oct 13 2011
    
  • Maple
    a:= proc(n) option remember;
          1+add(a(d), d=numtheory[divisors](n) minus {n})
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 17 2021
  • Mathematica
    a[1]=1; a[n_] := a[n] = 1+Sum[If[Mod[n,d]==0, a[d], 0], {d, 1, n-1}]; Array[a,100] (* Jean-François Alcover, Apr 28 2011 *)
  • PARI
    A=vector(100);A[1]=1; for(n=2,#A,A[n]=1+sumdiv(n,d,A[d])); A \\ Charles R Greathouse IV, Nov 20 2012

Formula

a(n) = 2*A074206(n), n>1. - Vladeta Jovovic, Jul 03 2005
a(p^k) = 2^k for primes p. - Reinhard Zumkeller, Sep 03 2006
a(n) = Sum_{d|n} A002033(d-1) = Sum_{d|n} A074206(d). - Gus Wiseman, Jul 13 2018
Dirichlet g.f.: zeta(s) / (2 - zeta(s)). - Álvar Ibeas, Dec 30 2018
G.f. A(x) satisfies: A(x) = x/(1 - x) + Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, May 18 2019

Extensions

Entry revised by N. J. A. Sloane, Aug 27 2006

A122651 Number of partitions of n into distinct parts, with each part divisible by the next.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 3, 5, 5, 4, 6, 6, 4, 6, 6, 6, 9, 7, 4, 7, 8, 7, 9, 9, 6, 10, 10, 7, 10, 8, 8, 12, 9, 7, 12, 13, 8, 12, 12, 9, 16, 12, 5, 11, 13, 13, 15, 13, 9, 12, 15, 14, 17, 13, 7, 14, 14, 11, 21, 18, 13, 21, 16, 10, 14, 16, 12, 15, 15, 10, 21, 20, 13, 20, 16, 17, 25, 17, 9, 19
Offset: 0

Views

Author

Keywords

Examples

			a(9)  = 4 : [9], [8,1], [6,3], [6,2,1].
a(15) = 6 : [15], [14,1], [12,3], [12,2,1], [10,5], [8,4,2,1].
		

Crossrefs

Programs

  • Maple
    A122651r := proc(n,pmax,dv) option remember ; local a,d ; a := 0 ; for d in dv do if d = n and d <= pmax then a := a+1 ; elif d < pmax and n-d > 0 then a := a+A122651r(n-d,d-1,numtheory[divisors](d) minus {d} ) ; fi; od: a ; end: A122651 := proc(n) local i; A122651r(n,n, convert([seq(i,i=1..n)],set) ) ; end: for n from 1 to 120 do printf("%d,",A122651(n)) ; od:  # R. J. Mathar, May 22 2009
    # second Maple program:
    with(numtheory):
    b:= proc(n) option remember;
          `if`(n=0, 1, add(b((n-d)/d), d=divisors(n) minus{1}))
        end:
    a:= n-> `if`(n=0, 1, b(n)+b(n-1));
    seq(a(n), n=0..200);  # Alois P. Heinz, Mar 28 2011
  • Mathematica
    b[0] = 1; b[n_] := b[n] = Sum[b[(n - d)/d], {d, Divisors[n] // Rest}]; a[0] = 1; a[n_] := b[n] + b[n-1]; Table[a[n], {n, 0, 84}] (* Jean-François Alcover, Mar 26 2013, after Alois P. Heinz *)
  • PARI
    { a(n,m=0) = local(r=0); if(n==0,return(1)); fordiv(n,d, if(d<=m,next); r+=a((n-d)\d,1); ); r } /* Max Alekseyev */

Formula

For n>0, a(n) = A167865(n) + A167865(n-1).

Extensions

More terms from R. J. Mathar, May 22 2009
a(0)=1 prepended by Max Alekseyev, Nov 13 2009

A083710 Number of integer partitions of n with a part dividing all the other parts.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 12, 20, 25, 37, 43, 70, 78, 114, 143, 196, 232, 330, 386, 530, 641, 836, 1003, 1340, 1581, 2037, 2461, 3127, 3719, 4746, 5605, 7038, 8394, 10376, 12327, 15272, 17978, 22024, 26095, 31730, 37339, 45333, 53175, 64100, 75340, 90138
Offset: 0

Views

Author

N. J. A. Sloane, Jun 16 2003

Keywords

Comments

Since the summand (part) which divides all the other summands is necessarily the smallest, an equivalent definition is: "Number of partitions of n such that smallest part divides every part." - Joerg Arndt, Jun 08 2009
The first few partitions that fail the criterion are 5=3+2, 7=5+2=4+3=3+2+2. So a(5) = A000041(5) - 1 = 6, a(7) = A000041(7) - 3 = 12. - Vladeta Jovovic, Jun 17 2003
Starting with offset 1 = inverse Mobius transform (A051731) of the partition numbers, A000041. - Gary W. Adamson, Jun 08 2009

Examples

			From _Gus Wiseman_, Apr 18 2021: (Start)
The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (41)     (33)      (61)
             (111)  (31)    (221)    (42)      (331)
                    (211)   (311)    (51)      (421)
                    (1111)  (2111)   (222)     (511)
                            (11111)  (321)     (2221)
                                     (411)     (3211)
                                     (2211)    (4111)
                                     (3111)    (22111)
                                     (21111)   (31111)
                                     (111111)  (211111)
                                               (1111111)
(End)
		

References

  • L. M. Chawla, M. O. Levan and J. E. Maxfield, On a restricted partition function and its tables, J. Natur. Sci. and Math., 12 (1972), 95-101.

Crossrefs

Cf. A000041, A051731. - Gary W. Adamson, Jun 08 2009
The case with no 1's is A083711.
The strict case is A097986.
The version for "divisible by" instead of "dividing" is A130689.
The case where there is also a part divisible by all the others is A130714.
The complement of these partitions is counted by A338470.
The Heinz numbers of these partitions are dense, complement of A342193.
The case where there is also no part divisible by all the others is A343345.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.

Programs

  • Maple
    with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l)-0 do c := c+numbpart(l[i]-1) od: RETURN(c): end: for j from 0 to 60 do printf(`%d, `, a(j)) od: # Zerinvary Lajos, Apr 14 2007
  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}] (* Gus Wiseman, Apr 18 2021 *)

Formula

Equals left border of triangle A137587 starting (1, 2, 3, 5, 6, 11, ...). - Gary W. Adamson, Jan 27 2008
G.f.: 1 + Sum_{n>=1} x^n/eta(x^n). The g.f. for partitions into parts that are a multiple of n is x^n/eta(x^n), now sum over n. - Joerg Arndt, Jun 08 2009
Gary W. Adamson's comment is equivalent to the formula a(n) = Sum_{d|n} p(d-1) where p(i) = number of partitions of i (A000041(i)). Hence A083710 has g.f. Sum_{d>=1} p(d-1)*x^d/(1-x^d), - N. J. A. Sloane, Jun 08 2009

Extensions

More terms from Vladeta Jovovic, Jun 17 2003
Name shortened by Gus Wiseman, Apr 18 2021

A069916 Number of log-concave compositions (ordered partitions) of n.

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 14, 20, 26, 36, 47, 60, 80, 102, 127, 159, 194, 236, 291, 355, 425, 514, 611, 718, 856, 1009, 1182, 1381, 1605, 1861, 2156, 2496, 2873, 3299, 3778, 4301, 4902, 5574, 6325, 7176, 8116, 9152, 10317, 11610, 13028, 14611, 16354, 18259, 20365
Offset: 0

Views

Author

Pontus von Brömssen, Apr 24 2002

Keywords

Comments

These are compositions with weakly decreasing first quotients, where the first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3). - Gus Wiseman, Mar 16 2021

Examples

			Out of the 8 compositions of 4, only 2+1+1 and 1+1+2 are not log-concave, so a(4)=6.
From _Gus Wiseman_, Mar 15 2021: (Start)
The a(1) = 1 through a(6) = 14 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (13)    (14)     (15)
             (21)   (22)    (23)     (24)
             (111)  (31)    (32)     (33)
                    (121)   (41)     (42)
                    (1111)  (122)    (51)
                            (131)    (123)
                            (221)    (132)
                            (11111)  (141)
                                     (222)
                                     (231)
                                     (321)
                                     (1221)
                                     (111111)
(End)
		

Crossrefs

The version for differences instead of quotients is A070211.
A000005 counts constant compositions.
A000009 counts strictly increasing (or strictly decreasing) compositions.
A000041 counts weakly increasing (or weakly decreasing) compositions.
A001055 counts factorizations.
A002843 counts compositions with adjacent parts x <= 2y.
A003238 counts chains of divisors summing to n-1, with strict case A122651.
A003242 counts anti-run compositions.
A074206 counts ordered factorizations.
A167865 counts strict chains of divisors summing to n.

Programs

  • Mathematica
    (* This program is not suitable for computing a large number of terms *)
    compos[n_] := Permutations /@ IntegerPartitions[n] // Flatten[#, 1]&;
    logConcaveQ[p_] := And @@ Table[p[[i]]^2 >= p[[i-1]]*p[[i+1]], {i, 2, Length[p]-1}]; a[n_] := Count[compos[n], p_?logConcaveQ]; Table[an = a[n]; Print["a(", n, ") = ", an]; a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 29 2016 *)
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],GreaterEqual@@Divide@@@Reverse/@Partition[#,2,1]&]],{n,0,15}] (* Gus Wiseman, Mar 15 2021 *)
  • Sage
    def A069916(n) : return sum(all(p[i]^2 >= p[i-1] * p[i+1] for i in range(1, len(p)-1)) for p in Compositions(n)) # Eric M. Schmidt, Sep 29 2013

A251683 Irregular triangular array: T(n,k) is the number of ordered factorizations of n with exactly k factors, n >= 1, 1 <= k <= A086436(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 2, 1, 2, 1, 3, 3, 1, 1, 1, 4, 3, 1, 1, 4, 3, 1, 2, 1, 2, 1, 1, 6, 9, 4, 1, 1, 1, 2, 1, 2, 1, 1, 4, 3, 1, 1, 6, 6, 1, 1, 4, 6, 4, 1, 1, 2, 1, 2, 1, 2, 1, 7, 12, 6, 1, 1, 2, 1, 2, 1, 6, 9, 4
Offset: 1

Views

Author

Geoffrey Critzer, Dec 06 2014

Keywords

Comments

Row sums = A074206.
Row lengths give A086436.
T(n,2) = A070824(n).
T(n,3) = A200221(n).
Sum_{k>=1} k*T(n,k) = A254577.
For all n > 1, Sum_{k=1..A086436(n)} (-1)^k*T(n,k) = A008683(n). - Geoffrey Critzer, May 25 2018
From Gus Wiseman, Aug 21 2020: (Start)
Also the number of strict length k + 1 chains of divisors from n to 1. For example, row n = 24 counts the following chains:
24/1 24/2/1 24/4/2/1 24/8/4/2/1
24/3/1 24/6/2/1 24/12/4/2/1
24/4/1 24/6/3/1 24/12/6/2/1
24/6/1 24/8/2/1 24/12/6/3/1
24/8/1 24/8/4/1
24/12/1 24/12/2/1
24/12/3/1
24/12/4/1
24/12/6/1
(End)

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1;
  1, 1;
  1;
  1, 2;
  1;
  1, 2, 1;
  1, 1;
  1, 2;
  1;
  1, 4, 3;
  1;
  1, 2;
  1, 2;
  ...
There are 8 ordered factorizations of the integer 12: 12, 6*2, 4*3, 3*4, 2*6, 3*2*2, 2*3*2, 2*2*3.  So T(12,1)=1, T(12,2)=4, and T(12,3)=3.
		

Crossrefs

A008480 gives rows ends.
A086436 gives row lengths.
A124433 is the same except for signs and zeros.
A334996 is the same except for zeros.
A337107 is the restriction to factorial numbers (but with zeros).
A000005 counts divisors.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A074206 counts strict chains of divisors from n to 1.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict nonempty chains of divisors of n.
A337071 counts strict chains of divisors starting with n!.
A337256 counts strict chains of divisors of n.

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; expand(x*(1+
          add(b(n/d), d=divisors(n) minus {1, n})))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=1..100);  # Alois P. Heinz, Dec 07 2014
  • Mathematica
    f[1] = {{}};
    f[n_] := f[n] =
      Level[Table[
        Map[Prepend[#, d] &, f[n/d]], {d, Rest[Divisors[n]]}], {2}];
    Prepend[Map[Select[#, # > 0 &] &,
      Drop[Transpose[
        Table[Map[Count[#, k] &,
          Map[Length, Table[f[n], {n, 1, 40}], {2}]], {k, 1, 10}]],
       1]],{1}] // Grid
    (* Second program: *)
    b[n_] := b[n] = x(1+Sum[b[n/d], {d, Divisors[n]~Complement~{1, n}}]);
    T[n_] := CoefficientList[b[n]/x, x];
    Array[T, 100] // Flatten (* Jean-François Alcover, Nov 17 2020, after Alois P. Heinz *)

Formula

Dirichlet g.f.: 1/(1 - y*(zeta(x)-1)).

A097986 Number of strict integer partitions of n with a part dividing all the other parts.

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 3, 5, 5, 7, 6, 12, 9, 13, 15, 20, 18, 28, 26, 37, 39, 47, 49, 71, 68, 85, 94, 117, 120, 159, 160, 201, 216, 257, 277, 348, 357, 430, 470, 562, 592, 720, 758, 901, 981, 1134, 1220, 1457, 1542, 1798, 1952, 2250, 2419, 2819, 3023, 3482, 3773, 4291
Offset: 1

Views

Author

Vladeta Jovovic, Oct 23 2004

Keywords

Comments

If n > 0, we can assume such a part is the smallest. - Gus Wiseman, Apr 23 2021
Also the number of uniform (constant multiplicity) partitions of n containing 1, ranked by A367586. The strict case is A096765. The version without 1 is A329436. - Gus Wiseman, Dec 01 2023

Examples

			From _Gus Wiseman_, Dec 01 2023: (Start)
The a(1) = 1 through a(8) = 5 strict partitions with a part dividing all the other parts:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)
            (2,1)  (3,1)  (4,1)  (4,2)    (6,1)    (6,2)
                                 (5,1)    (4,2,1)  (7,1)
                                 (3,2,1)           (4,3,1)
                                                   (5,2,1)
The a(1) = 1 through a(8) = 5 uniform partitions containing 1:
  (1)  (11)  (21)   (31)    (41)     (51)      (61)       (71)
             (111)  (1111)  (11111)  (321)     (421)      (431)
                                     (2211)    (1111111)  (521)
                                     (111111)             (3311)
                                                          (11111111)
(End)
		

Crossrefs

The non-strict version is A083710.
The case with no 1's is A098965.
The Heinz numbers of these partitions are A339563.
The strict complement is counted by A341450.
The version for "divisible by" instead of "dividing" is A343347.
The case where there is also a part divisible by all the others is A343378.
The case where there is no part divisible by all the others is A343381.
A000005 counts divisors.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.

Programs

  • Mathematica
    Take[ CoefficientList[ Expand[ Sum[x^k*Product[1 + x^(k*i), {i, 2, 62}], {k, 62}]], x], {2, 60}] (* Robert G. Wilson v, Nov 01 2004 *)
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Or@@Table[And@@IntegerQ/@(#/x), {x,#}]&]], {n,0,30}] (* Gus Wiseman, Apr 23 2021 *)
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(sum(k=1,N,x^k*prod(i=2,N-k, (1+x^(k*i)))))}
    A_x(50) \\ John Tyler Rascoe, Nov 19 2024

Formula

a(n) = Sum_{d|n} A025147(d-1).
G.f.: Sum_{k>=1} (x^k*Product_{i>=2} (1+x^(k*i))).
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jul 06 2025

Extensions

More terms from Robert G. Wilson v, Nov 01 2004
Name shortened by Gus Wiseman, Apr 23 2021

A334996 Irregular triangle read by rows: T(n, m) is the number of ways to distribute Omega(n) objects into precisely m distinct boxes, with no box empty (Omega(n) >= m).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 1, 0, 1, 1, 0, 1, 2, 0, 1, 0, 1, 4, 3, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 3, 3, 1, 0, 1, 0, 1, 4, 3, 0, 1, 0, 1, 4, 3, 0, 1, 2, 0, 1, 2, 0, 1, 0, 1, 6, 9, 4, 0, 1, 1, 0, 1, 2, 0, 1, 2, 1, 0, 1, 4, 3, 0, 1, 0, 1, 6, 6
Offset: 1

Views

Author

Stefano Spezia, May 19 2020

Keywords

Comments

n is the specification number for a set of Omega(n) objects (see Theorem 3 in Beekman's article).
The specification number of a multiset is also called its Heinz number. - Gus Wiseman, Aug 25 2020
From Gus Wiseman, Aug 25 2020: (Start)
For n > 1, T(n,k) is also the number of ordered factorizations of n into k factors > 1. For example, row n = 24 counts the following ordered factorizations (the first column is empty):
24 3*8 2*2*6 2*2*2*3
4*6 2*3*4 2*2*3*2
6*4 2*4*3 2*3*2*2
8*3 2*6*2 3*2*2*2
12*2 3*2*4
2*12 3*4*2
4*2*3
4*3*2
6*2*2
For n > 1, T(n,k) is also the number of strict length-k chains of divisors from n to 1. For example, row n = 36 counts the following chains (the first column is empty):
36/1 36/2/1 36/4/2/1 36/12/4/2/1
36/3/1 36/6/2/1 36/12/6/2/1
36/4/1 36/6/3/1 36/12/6/3/1
36/6/1 36/9/3/1 36/18/6/2/1
36/9/1 36/12/2/1 36/18/6/3/1
36/12/1 36/12/3/1 36/18/9/3/1
36/18/1 36/12/4/1
36/12/6/1
36/18/2/1
36/18/3/1
36/18/6/1
36/18/9/1
(End)

Examples

			The triangle T(n, m) begins
  n\m| 0     1     2     3     4
  ---+--------------------------
   1 | 0
   2 | 0     1
   3 | 0     1
   4 | 0     1     1
   5 | 0     1
   6 | 0     1     2
   7 | 0     1
   8 | 0     1     2     1
   9 | 0     1     1
  10 | 0     1     2
  11 | 0     1
  12 | 0     1     4     3
  13 | 0     1
  14 | 0     1     2
  15 | 0     1     2
  16 | 0     1     3     3     1
  ...
From _Gus Wiseman_, Aug 25 2020: (Start)
Row n = 36 counts the following distributions of {1,1,2,2} (the first column is empty):
  {1122}  {1}{122}  {1}{1}{22}  {1}{1}{2}{2}
          {11}{22}  {1}{12}{2}  {1}{2}{1}{2}
          {112}{2}  {11}{2}{2}  {1}{2}{2}{1}
          {12}{12}  {1}{2}{12}  {2}{1}{1}{2}
          {122}{1}  {12}{1}{2}  {2}{1}{2}{1}
          {2}{112}  {1}{22}{1}  {2}{2}{1}{1}
          {22}{11}  {12}{2}{1}
                    {2}{1}{12}
                    {2}{11}{2}
                    {2}{12}{1}
                    {2}{2}{11}
                    {22}{1}{1}
(End)
		

References

  • Richard Beekman, An Introduction to Number-Theoretic Combinatorics, Lulu Press 2017.

Crossrefs

Cf. A000007 (1st column), A000012 (2nd column), A001222 (Omega function), A002033 (row sums shifted left), A007318.
A008480 gives rows ends.
A073093 gives row lengths.
A074206 gives row sums.
A112798 constructs the multiset with each specification number.
A124433 is a signed version.
A251683 is the version with zeros removed.
A334997 is the non-strict version.
A337107 is the restriction to factorial numbers.
A001055 counts factorizations.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A167865 counts strict chains of divisors > 1 summing to n.
A253249 counts strict chains of divisors.
A337105 counts strict chains of divisors from n! to 1.

Programs

  • Mathematica
    tau[n_,k_]:=If[n==1,1,Product[Binomial[Extract[Extract[FactorInteger[n],i],2]+k,k],{i,1,Length[FactorInteger[n]]}]]; (* A334997 *)
    T[n_,m_]:=Sum[(-1)^k*Binomial[m,k]*tau[n,m-k-1],{k,0,m-1}]; Table[T[n,m],{n,1,30},{m,0,PrimeOmega[n]}]//Flatten
    (* second program *)
    chc[n_]:=If[n==1,{{}},Prepend[Join@@Table[Prepend[#,n]&/@chc[d],{d,DeleteCases[Divisors[n],1|n]}],{n}]]; (* change {{}} to {} if a(1) = 0 *)
    Table[Length[Select[chc[n],Length[#]==k&]],{n,30},{k,0,PrimeOmega[n]}] (* Gus Wiseman, Aug 25 2020 *)
  • PARI
    TT(n, k) = if (k==0, 1, sumdiv(n, d, TT(d, k-1))); \\ A334997
    T(n, m) = sum(k=0, m-1, (-1)^k*binomial(m, k)*TT(n, m-k-1));
    tabf(nn) = {for (n=1, nn, print(vector(bigomega(n)+1, k, T(n, k-1))););} \\ Michel Marcus, May 20 2020

Formula

T(n, m) = Sum_{k=0..m-1} (-1)^k*binomial(m,k)*tau_{m-k-1}(n), where tau_s(r) = A334997(r, s) (see Theorem 3, Lemma 1 and Lemma 2 in Beekman's article).
Conjecture: Sum_{m=0..Omega(n)} T(n, m) = A002033(n-1) for n > 1.
The above conjecture is true since T(n, m) is also the number of ordered factorizations of n into m factors (see Comments) and A002033(n-1) is the number of ordered factorizations of n. - Stefano Spezia, Aug 21 2025

A336424 Number of factorizations of n where each factor belongs to A130091 (numbers with distinct prime multiplicities).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 5, 2, 1, 3, 3, 1, 1, 1, 7, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 9, 2, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 4, 1, 1, 3, 11, 1, 1, 1, 3, 1, 1, 1, 11, 1, 1, 3, 3, 1, 1, 1, 9, 5, 1, 1, 4, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2020

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization, so a number has distinct prime multiplicities iff all the exponents in its prime signature are distinct.

Examples

			The a(n) factorizations for n = 2, 4, 8, 60, 16, 36, 32, 48:
  2  4    8      5*12     16       4*9      32         48
     2*2  2*4    3*20     4*4      3*12     4*8        4*12
          2*2*2  3*4*5    2*8      3*3*4    2*16       3*16
                 2*2*3*5  2*2*4    2*18     2*4*4      3*4*4
                          2*2*2*2  2*2*9    2*2*8      2*24
                                   2*2*3*3  2*2*2*4    2*3*8
                                            2*2*2*2*2  2*2*12
                                                       2*2*3*4
                                                       2*2*2*2*3
		

Crossrefs

A327523 is the case when n is restricted to belong to A130091 also.
A001055 counts factorizations.
A007425 counts divisors of divisors.
A045778 counts strict factorizations.
A074206 counts ordered factorizations.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A253249 counts nonempty chains of divisors.
A281116 counts factorizations with no common divisor.
A302696 lists numbers whose prime indices are pairwise coprime.
A305149 counts stable factorizations.
A320439 counts factorizations using A289509.
A327498 gives the maximum divisor with distinct prime multiplicities.
A336500 counts divisors of n in A130091 with quotient also in A130091.
A336568 = not a product of two numbers with distinct prime multiplicities.
A336569 counts maximal chains of elements of A130091.
A337256 counts chains of divisors.

Programs

  • Mathematica
    facsusing[s_,n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facsusing[Select[s,Divisible[n/d,#]&],n/d],Min@@#>=d&]],{d,Select[s,Divisible[n,#]&]}]];
    Table[Length[facsusing[Select[Range[2,n],UnsameQ@@Last/@FactorInteger[#]&],n]],{n,100}]
Showing 1-10 of 95 results. Next