cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 225 results. Next

A174725 a(n) = (A074206(n) + A008683(n))/2.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 4, 0, 2, 2, 4, 0, 4, 0, 4, 2, 2, 0, 10, 1, 2, 2, 4, 0, 6, 0, 8, 2, 2, 2, 13, 0, 2, 2, 10, 0, 6, 0, 4, 4, 2, 0, 24, 1, 4, 2, 4, 0, 10, 2, 10, 2, 2, 0, 22, 0, 2, 4, 16, 2, 6, 0, 4, 2, 6, 0, 38, 0, 2, 4, 4, 2
Offset: 1

Views

Author

Mats Granvik, Mar 28 2010

Keywords

Comments

From Mats Granvik, May 25 2017: (Start)
A074206(n) = A002033(n-1) = a(n) + A174726(n).
A008683(n) = a(n) - A174726(n).
Let m = size of matrix a matrix T, and let T be defined as follows:
T(n,k) = if m = 1 then 1 else if mod(n, k) = 0 then if and(n = k, n = m) then 0 else 1 else if and(n = 1, k = m) then 1 else 0
a(n) is then the number of permutation matrices with a positive contribution in the determinant of matrix T. The determinant of T is equal to the Möbius function A008683, see Mathematica program below for how to compute the determinant.
A174726 is the number of permutation matrices with a negative contribution in the determinant of matrix T.
(End)
From Gus Wiseman, Jan 04 2021: (Start)
Also the number of ordered factorizations of n into an even number of factors > 1. The non-ordered case is A339846. For example, the a(n) factorizations for n = 12, 24, 30, 32, 36 are:
(2*6) (3*8) (5*6) (4*8) (4*9)
(3*4) (4*6) (6*5) (8*4) (6*6)
(4*3) (6*4) (10*3) (16*2) (9*4)
(6*2) (8*3) (15*2) (2*16) (12*3)
(12*2) (2*15) (2*2*2*4) (18*2)
(2*12) (3*10) (2*2*4*2) (2*18)
(2*2*2*3) (2*4*2*2) (3*12)
(2*2*3*2) (4*2*2*2) (2*2*3*3)
(2*3*2*2) (2*3*2*3)
(3*2*2*2) (2*3*3*2)
(3*2*2*3)
(3*2*3*2)
(3*3*2*2)
(End)

Crossrefs

The odd version is A174726.
The unordered version is A339846.
A001055 counts factorizations, with strict case A045778.
A058696 counts partitions of even numbers, ranked by A300061.
A074206 counts ordered factorizations, with strict case A254578.
A251683 counts ordered factorizations by product and length.
Other cases of even length:
- A024430 counts set partitions of even length.
- A027187 counts partitions of even length.
- A034008 counts compositions of even length.
- A052841 counts ordered set partitions of even length.
- A067661 counts strict partitions of even length.
- A332305 counts strict compositions of even length

Programs

  • Mathematica
    (* From Mats Granvik, May 25 2017: (Start) *)
    Clear[t, nn]; nn = 77; t[1, 1] = 1; t[n_, k_] := t[n, k] = If[k == 1, Sum[t[n, k + i], {i, 1, n - 1}], If[Mod[n, k] == 0, t[n/k, 1], 0], 0]; Monitor[Table[Sum[If[Mod[n, k] == 0, MoebiusMu[k]*t[n/k, 1], 0], {k, 1, 77}], {n, 1, nn}], n]
    (* The Möbius function as a determinant *) Table[Det[Table[Table[If[m == 1, 1, If[Mod[n, k] == 0, If[And[n == k, n == m], 0, 1], If[And[n == 1, k == m], 1, 0]]], {k, 1, m}], {n, 1, m}]], {m, 1, 42}]
    (* (End) *)
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[ordfacs[n],EvenQ@*Length]],{n,100}] (* Gus Wiseman, Jan 04 2021 *)

Formula

a(n) = (Mobius transform of a(n)) + (Mobius transform of A174726). - Mats Granvik, Apr 04 2010
From Mats Granvik, May 25 2017: (Start)
This sequence is the Moebius transform of A074206.
a(n) = (A074206(n) + A008683(n))/2.
(End)
G.f. A(x) satisfies: A(x) = x + Sum_{i>=2} Sum_{j>=2} A(x^(i*j)). - Ilya Gutkovskiy, May 11 2019

Extensions

References to A002033(n-1) changed to A074206(n) by Antti Karttunen, Nov 23 2024

A163272 Numbers k such that k = A074206(k), the number of ordered factorizations of k.

Original entry on oeis.org

0, 1, 48, 1280, 2496, 28672, 29808, 454656, 2342912, 11534336, 57409536, 218103808, 34753216512, 73014444032, 583041810432, 1305670057984, 2624225017856, 404620279021568, 467515780104192, 1014849232437248, 4446425022726144, 5806013294837760, 46545625738641408
Offset: 1

Views

Author

Mats Granvik, Jul 24 2009

Keywords

Comments

From Mauro Fiorentini, Jul 15 2018: (Start)
If p is an odd prime, 2^(2*p - 2)*p belongs to the sequence, so the sequence is infinite.
If n^2 + 6*n + 6 = 2*p*q is twice the product of two distinct odd primes, 2^n*p*q belongs to the sequence.
No number of the form 2^n*p^2, with p odd prime, belongs to the sequence. (End)
For every possible prime signature (see A025487) there can be at most one number having it in this sequence. - David A. Corneth, Jul 15 2018
2*10^14 < a(18) <= 404620279021568. Also terms: 467515780104192, 1014849232437248, 4446425022726144, 5806013294837760, and 46545625738641408. - Giovanni Resta, Jul 16 2018
These numbers are named "super-perfect numbers" (Miller), "gamma-perfect numbers" (Sandor & Crstici), "factor-perfect numbers" (Knopfmacher & Mays) and "balanced numbers" (Brown). - Amiram Eldar, Aug 22 2018
From David A. Corneth, Aug 23 2018: (Start)
Suppose one searches terms below u. We have A074206(m * t) > A074206(m) for m, t > 1 so if A074206(m) > u we needn't check any value A074206(m * t) where m * t < u.
All terms < 10^25 except 29809 are of the form 4^e * s where s is a squarefree odd number. (End)

References

  • J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, pp. 54-55.

Crossrefs

Programs

  • Maple
    A074206 := proc(n) option remember; if n <= 1 then n; else add(procname(d), d=numtheory[divisors](n) minus {n}) ; end if; end proc: for n from 1 do if n = A074206(n) then printf("%d,\n",n) ; end if; end do: \\ R. J. Mathar, Aug 01 2009
  • PARI
    term(n) = {my(f = A074206(n)); if(factor(n)[, 2] == factor(f)[, 2], f, 0)};
    isok(n) = term(n) == n;  \\ David A. Corneth, Jul 15 2018

Extensions

a(6)-a(7) from R. J. Mathar, Aug 01 2009
a(8)-a(9) from Nathaniel Johnston, Dec 04 2010
a(10)-a(12) from Mauro Fiorentini, Dec 07 2015
a(13)-a(17) from Giovanni Resta, Jul 16 2018, following a suggestion from David A. Corneth
a(18)-a(23) from Amiram Eldar, Aug 22 2018, following the same suggestion with an extended list of terms of A025487.

A050324 Number of ordered factorizations indexed by prime signatures: A074206(A025487).

Original entry on oeis.org

1, 1, 2, 3, 4, 8, 8, 20, 13, 16, 26, 48, 44, 32, 76, 112, 132, 64, 208, 176, 256, 75, 252, 368, 128, 544, 604, 576, 308, 768, 976, 256, 1376, 1888, 1280, 1076, 2208, 818, 2496, 512, 2316, 3392, 1460, 2568, 5536, 2816, 3408, 6080, 3172, 6208, 1024, 7968
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

This sequence can help to find terms for A163272, as has been done by Giovanni Resta. A074206(n) is computed only from the prime signature of n. If A074206(k) has the same prime signature as k then A074206(k) is in A163272. - David A. Corneth, Jul 16 2018
The number of ordered prime factorizations of n is A074206(n), not really A002033(n) = A074206(n-1). This has induced confusion in A002033 so it might be worth mentioning the distinction to be made. - M. F. Hasler, Oct 12 2018

Crossrefs

Programs

Extensions

Edited to accommodate change in A025487's offset by Matthew Vandermast, Nov 27 2009

A307866 K-champion numbers: numbers m such that K(m) > K(j) for all j < m, where K(m) is the Kalmár function (A074206).

Original entry on oeis.org

0, 1, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 144, 192, 240, 288, 360, 432, 480, 576, 720, 864, 960, 1152, 1440, 1728, 1920, 2160, 2304, 2880, 3456, 4320, 5760, 6912, 8640, 11520, 17280, 23040, 25920, 30240, 34560, 46080, 51840, 60480, 69120, 86400, 103680, 120960
Offset: 1

Views

Author

Amiram Eldar, May 02 2019

Keywords

Comments

The corresponding record values are 0, 1, 2, 3, 4, 8, 20, 26, 48, 76, 112, 132, 208, ... (see the link for more values).
Deléglise et al. (2008) proved that the number of powerful (A001694) terms in this sequence is finite. They ask whether a(391) = 485432135516160000 (the 112th powerful term) is the largest. - Amiram Eldar, Aug 20 2019
Is abs(omega(a(n)) - omega(a(n+1))) <= 1? (Cf. A001221.) - David A. Corneth, Apr 16 2020

Crossrefs

Cf. A001221, A001694, A002093, A033833, A074206, A163272, A330686 (after primorial deflation).

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Total[a /@ Most[Divisors[n]]]; s = {}; am=-1; Do[a1 = a[n]; If[a1>am, am=a1; AppendTo[s, n]], {n, 0, 10000}]; s

Formula

For n >= 1, a(1+n) = A108951(A330686(n)). - Antti Karttunen, Dec 31 2019

A378647 Dirichlet convolution of A074206 and A103977, where A074206 is the number of ordered factorizations of n, and A103977 is the Zumkeller deficiency of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 13, 14, 15, 16, 17, 22, 19, 22, 21, 22, 23, 40, 25, 26, 27, 28, 29, 42, 31, 32, 33, 34, 35, 64, 37, 38, 39, 52, 41, 54, 43, 44, 45, 46, 47, 96, 49, 50, 51, 52, 53, 70, 55, 64, 57, 58, 59, 126, 61, 62, 63, 64, 65, 78, 67, 68, 69, 74, 71, 176, 73, 74, 75, 76, 77, 90, 79, 120, 81
Offset: 1

Views

Author

Antti Karttunen, Dec 03 2024

Keywords

Comments

Möbius transform of A378648, which is the Dirichlet convolution of A067824 and A103977.

Crossrefs

Cf. A000027, A008683, A067824, A074206, A103977, A263837, A378648 (inverse Möbius transform), A378649 (Möbius transform), A378650 [= a(n)-n], A378655 (Dirichlet inverse).

Programs

Formula

a(n) = Sum_{d|n} A074206(d)*A103977(n/d).
a(n) = Sum_{d|n} A008683(d)*A378648(n/d).
a(n) = Sum_{d|n} A067824(d)*A378644(n/d).
a(n) = A378650(n)+n, with a(n) = n if and only if n is a non-abundant number (A263837).

A361662 Least number k >= 1 such that A074206(k) is divisible by n.

Original entry on oeis.org

1, 4, 6, 8, 24, 48, 96, 12, 216, 24, 60, 48, 30, 96, 210, 32, 288, 216, 72, 24, 216, 60, 240, 48, 210, 36, 6480, 96, 15552, 4320, 7560, 64, 120, 288, 2520, 216, 5040, 72, 960, 768, 2520, 216, 576, 60, 83160, 240, 7680, 48, 18480, 13860, 7776, 144, 1152, 6480
Offset: 1

Views

Author

Pontus von Brömssen, Mar 20 2023

Keywords

Comments

a(n) exists for all n. (This is problem 5 of the first round of the British Mathematical Olympiad 2022/2023.)
All terms are in A025487.

Crossrefs

Programs

  • PARI
    f(n)={if(!n, 0, my(sig=factor(n)[, 2], m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r, k)*(-1)^(r-k))))}; \\ A074206
    a(n) = my(k=1); while (f(k) % n, k++); k; \\ Michel Marcus, Mar 23 2023

Formula

a(n) = A025487(A361663(n)).

A173382 Partial sums of A074206.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 9, 10, 14, 16, 19, 20, 28, 29, 32, 35, 43, 44, 52, 53, 61, 64, 67, 68, 88, 90, 93, 97, 105, 106, 119, 120, 136, 139, 142, 145, 171, 172, 175, 178, 198, 199, 212, 213, 221, 229, 232, 233, 281, 283, 291, 294, 302, 303, 323, 326, 346, 349, 352, 353, 397, 398, 401, 409, 441, 444, 457
Offset: 0

Views

Author

Jonathan Vos Post, Feb 17 2010

Keywords

Comments

Partial sums of number of ordered factorizations of n.
a(n) is also the number of ways to tile a strip of length at most log(n) with tiles having lengths {log(k) : k>=2}. - David Bevan, Jan 07 2025

Examples

			a(96) = 0 + 1 + 1 + 1 + 2 + 1 + 3 + 1 + 4 + 2 + 3 + 1 + 8 + 1 + 3 + 3 + 8 + 1 + 8 + 1 + 8 + 3 + 3 + 1 + 20 + 2 + 3 + 4 + 8 + 1 + 13 + 1 + 16 + 3 + 3 + 3 + 26 + 1 + 3 + 3 + 20 + 1 + 13 + 1 + 8 + 8 + 3 + 1 + 48 + 2 + 8 + 3 + 8 + 1 + 20 + 3 + 20 + 3 + 3 + 1 + 44 + 1 + 3 + 8 + 32 + 3 + 13 + 1 + 8 + 3 + 13 + 1 + 76 + 1 + 3 + 8 + 8 + 3 + 13 + 1 + 48 + 8 + 3 + 1 + 44 + 3 + 3 + 3 + 20 + 1 + 44 + 3 + 8 + 3 + 3 + 3 + 112.
		

References

  • Shikao Ikehara, On Kalmar's Problem in “Factorisatio Numerorum”, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, Vol. 21 (1939) pp. 208-219.
  • Shikao Ikehara, On Kalmar's Problem in “Factorisatio Numerorum” II, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, Vol. 23 (1941) pp. 767-774.
  • Kalmár, Laszlo. "Über die mittlere Anzahl der Produktdarstellungen der Zahlen.(Erste Mitteilung)'." Acta Litt. ac Scient. Szeged 5 (1931): 95-107.

Crossrefs

A025523 is an essentially identical sequence.

Programs

  • Mathematica
    Clear[a]; a[0] = 0; a[1] = 1; a[n_] := a[n] = 1 + Sum[a[Floor[n/k]], {k, 2, n}]; Table[a[n], {n, 0, 100}] (* Vaclav Kotesovec, Jan 31 2019 *)
    Clear[a]; a[0] = 0; a[1] = 1; a[n_] := a[n] = Total[a /@ Most[Divisors[n]]]; Join[{0}, Accumulate[a /@ Range[100]]] (* Vaclav Kotesovec, Jan 31 2019, after Jean-François Alcover, faster *)

Formula

a(n) = Sum_{i=0..n} A074206(i).
a(n) ~ -n^r / (r*Zeta'(r)), where r = A107311 = 1.728647238998183618135103... is the root of the equation Zeta(r) = 2. - Vaclav Kotesovec, Jan 31 2019

Extensions

Terms corrected by N. J. A. Sloane, May 04 2016

A174888 Triangle read by rows. Row sums = Mobius function A008683, row counts of nonzero elements = A074206.

Original entry on oeis.org

1, 0, -1, 0, -1, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 1, -1, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, 0, 0
Offset: 1

Views

Author

Mats Granvik, Apr 01 2010

Keywords

Comments

This table cannot be completed as a triangle beyond row 95 because the ordered factorization value for 96 is 112, which is greater than the row length 96. Values in the first column are either zero or one, and are chosen so that the number of nonzero elements in each row equals A074206 while rows sums equals A008683. The row indices for nonzero elements in the 1st column are A174891.

Examples

			Table begins:
n\k|....1....2....3....4....5....6....7....8....9...10
---|--------------------------------------------------
1..|....1
2..|....0...-1
3..|....0...-1....0
4..|....1...-1....0....0
5..|....0...-1....0....0....0
6..|....1...-1....1....0....0....0
7..|....0...-1....0....0....0....0....0
8..|....1...-1....1...-1....0....0....0....0
9..|....1...-1....0....0....0....0....0....0....0
10.|....1...-1....1....0....0....0....0....0....0....0
Notice that the 30th row begins with a zero:
0,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1
		

Crossrefs

Formula

First column = A174889.
Beginning from the second column: a(n)=if k<=A074206 then ((-1)^(k+1)) else 0.

A361664 a(n) = A074206(A361662(n))/n.

Original entry on oeis.org

1, 1, 1, 1, 4, 8, 16, 1, 28, 2, 4, 4, 1, 8, 5, 1, 32, 14, 4, 1, 12, 2, 16, 2, 3, 1, 1104, 4, 2944, 848, 804, 1, 4, 16, 164, 7, 544, 2, 64, 32, 140, 6, 32, 1, 6812, 8, 768, 1, 752, 286, 528, 4, 64, 552, 260, 2, 3904, 1472, 32, 424, 16, 402, 4, 1, 220, 2, 372, 8
Offset: 1

Views

Author

Pontus von Brömssen, Mar 20 2023

Keywords

Crossrefs

Formula

a(n) = A361667(n) if n is not in A361668. The equality holds also for some n in A361668; for example, a(256) = A361667(256) = 1.

A160086 a(n) = A104725(n) - A074206(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 7, 0, 3, 0, 3, 0, 0, 0, 25, 0, 0, 1, 3, 0, 6, 0, 36, 0, 0, 0, 36, 0, 0, 0, 25, 0, 6, 0, 3, 3, 0, 0, 152, 0, 3, 0, 3, 0, 25, 0, 25, 0, 0, 0, 69, 0, 0, 3, 171, 0, 6, 0, 3, 0, 6, 0, 279, 0, 0, 3, 3, 0, 6, 0, 152, 7, 0, 0, 69, 0, 0, 0, 25, 0, 69, 0, 3, 0, 0, 0
Offset: 0

Views

Author

Augustine O. Munagi, May 01 2009

Keywords

Comments

a(n) is also the excess of the number of labeled factorizations of n over the number of ordered factorizations (see the Munagi link for definition of labeled factorization)

Examples

			a(8)=1 because A074206(8)=4 and A104725(8)=5, so a(8)=5-4. The only labeled factorization of 8 which is not an ordered factorization is (2_1.2_3)(2_2). a(9)=0 because A074206(9)=2=A104725(9). The labeled factorizations of 9, namely (9_1) and (3_1)(3_2), are also ordered factorizations.
		

Crossrefs

Programs

  • Maple
    a:=proc(n::integer) local u, r, i, j, k; if n<2 then return 0; end if; u:=map(x->x[2], ifactors(n)[2]); r:=add(u[i], i=1..nops(u)); add(add((-1)^i*binomial(k, i)*product(binomial(u[j]+k-i-1, u[j]), j=1..nops(u)), i=0..k-1)*(bell(k-1)-1), k=1..r); end proc: seq(a(n),n=0..99);

Formula

a(n) = Sum(ordfac(n,k)*(Bell(k-1)-1),k=1..Omega(n)), where ordfac(n,k)=number of ordered factorizations of n into k factors.
Showing 1-10 of 225 results. Next