cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Mauro Fiorentini

Mauro Fiorentini's wiki page.

Mauro Fiorentini has authored 9 sequences.

A259039 Larger of a non-unitary amicable pair.

Original entry on oeis.org

56, 248, 328, 496, 1016, 2032, 6462, 8128, 17412, 20538, 65528, 131056, 524224, 1048568, 2097136, 2096896, 4194296, 8388592, 8388544, 33554368, 33554176, 134217472, 2147467264, 8589918208
Offset: 1

Author

Mauro Fiorentini, Jun 17 2015

Keywords

Comments

The elements 2097136, 8388592, etc. are intentionally out of numerical order so that a(n) and A259038(n) form an amicable pair.

Crossrefs

Extensions

a(23)-a(24) added by Amiram Eldar, Sep 27 2018 from the b-file at A259037.

A259038 Smaller of a non-unitary amicable pair.

Original entry on oeis.org

48, 192, 252, 448, 768, 1792, 3240, 7936, 11616, 11808, 49152, 114688, 507904, 786432, 1835008, 2080768, 3145728, 7340032, 8126464, 32505856, 33292288, 133169152, 2147221504, 8588886016
Offset: 1

Author

Mauro Fiorentini, Jun 17 2015

Keywords

Comments

This sequence is strictly increasing (and A259039, which contains the larger number in each pair, is sorted by this sequence).

Crossrefs

Extensions

a(23)-a(24) added by Amiram Eldar, Sep 27 2018 from the b-file at A259037.

A259037 Non-unitary amicable numbers.

Original entry on oeis.org

48, 56, 192, 248, 252, 328, 448, 496, 768, 1016, 1792, 2032, 3240, 6462, 7936, 8128, 11616, 11808, 17412, 20538, 49152, 65528, 114688, 131056, 507904, 524224, 786432, 1048568, 1835008, 2080768, 2096896, 2097136, 3145728, 4194296, 7340032, 8126464, 8388544, 8388592, 32505856, 33292288, 33554176, 33554368, 133169152, 134217472
Offset: 1

Author

Mauro Fiorentini, Jun 17 2015

Keywords

Comments

A pair of integers x and y is called non-unitary amicable if the sum of the non-unitary divisors of either one is equal to the other. Union of A259038 and A259039.
The sequence lists the non-unitary amicable numbers in increasing order. Note that the pairs x, y are not always adjacent to each other in the list. See also A259038 for the x's, A259039 for the y's. The first time a pair is not adjacent is x = 11616, y = 17412 which correspond to a(17) and a(19), respectively.
No other pair below 10^9.
Ligh & Wall showed that if p and q are different Mersenne exponents (A000043) (i.e., 2^p - 1 and 2^q - 1 are Mersenne primes), then 2^(p+1) * (2^q-1) and 2^(q+1) * (2^p-1) is a nonunitary amicable pair. They also found the pairs (252, 328), (3240, 6462), (11616, 17412), (11808, 20538), which are all the known pairs that are not based on Mersenne primes. - Amiram Eldar, Sep 27 2018

Examples

			48 and 56 are in the sequence, as sigma(48)-usigma(48) = 56 and sigma(56)-usigma(56) = 48.
		

Crossrefs

Subsequence of A013929.

Programs

A256937 Numbers n such that phi(n) = 4*phi(n+1).

Original entry on oeis.org

629, 1469, 85139, 100889, 139859, 154979, 168149, 304079, 396899, 838199, 1107413, 1323449, 1465463, 2088839, 2160899, 2504879, 2684879, 2693249, 2800181, 3404609, 3512249, 3576869, 3885881, 4241819, 4500509, 4620659, 4822649, 5530709, 5805449
Offset: 1

Author

Mauro Fiorentini, Apr 13 2015

Keywords

Examples

			phi(629) = 576 = 4*phi(630).
		

Crossrefs

Programs

  • Magma
    [n: n in [1..10^7] | EulerPhi(n) eq 4*EulerPhi(n+1)]; // Vincenzo Librandi, Apr 14 2015
    
  • Maple
    A:= NULL:
    y:= numtheory:-phi(1):
    for n from 1 to 10^6 do
    x:= numtheory:-phi(n+1);
    if y = 4*x then A:= A, n fi;
    y:= x;
    od:
    A;  # Robert Israel, Apr 15 2015
  • Mathematica
    Select[Range@ 1000000, EulerPhi@ # == 4 EulerPhi[# + 1] &] (* Michael De Vlieger, Apr 13 2015 *)
    Position[Partition[EulerPhi[Range[6*10^6]],2,1],?(#[[1]]==4#[[2]]&),{1},Heads->False]//Flatten (* _Harvey P. Dale, Sep 18 2016 *)
  • PARI
    s=[]; for(n=1, 1000000, if(eulerphi(n)==4*eulerphi(n+1), s=concat(s, n))); s \\ Colin Barker, Apr 13 2015
    
  • Sage
    [n for n in (1..1000000) if euler_phi(n) == 4*euler_phi(n+1)]; # Bruno Berselli, Apr 14 2015

A256907 Numbers n such that phi(n) = 3*phi(n+1).

Original entry on oeis.org

119, 527, 545, 2849, 3689, 4487, 6649, 18619, 26771, 30377, 44659, 47585, 50507, 76997, 83021, 102167, 112463, 128933, 138773, 163877, 174437, 192881, 193115, 198263, 217967, 236441, 243827, 244001, 254539, 268067, 282359, 287825, 298115, 345059, 410123, 464645
Offset: 1

Author

Mauro Fiorentini, Apr 12 2015

Keywords

Examples

			phi(545) = 3*phi(546) = 432.
		

Crossrefs

Cf. A171262.

Programs

  • Magma
    [n: n in [1..2*10^6] | EulerPhi(n) eq 3*EulerPhi(n+1)]; // Vincenzo Librandi, Apr 13 2015
  • Mathematica
    Select[Range@ 1000000, EulerPhi@# == 3 EulerPhi[# + 1] &] (* Michael De Vlieger, Apr 12 2015 *)
  • PARI
    s=[]; for(n=1, 1000000, if(eulerphi(n)==3*eulerphi(n+1), s=concat(s, n))); s \\ Colin Barker, Apr 12 2015
    

A248899 Numbers that are palindromic in bases 10 and 19.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 666, 838, 1771, 432234, 864468, 1551551, 1897981, 2211122, 155292551, 330050033, 453848354, 467535764, 650767056, 666909666, 857383758, 863828368, 47069796074, 62558085526, 67269596276, 87161116178, 96060106069, 121791197121, 127673376721, 139103301931, 234595595432, 246025520642
Offset: 1

Author

Mauro Fiorentini, Mar 06 2015

Keywords

Comments

Next term > 10^12.

Examples

			838 = 262 in base 19.
		

Programs

  • Magma
    [n: n in [0..2*10^7] | Intseq(n) eq Reverse(Intseq(n))and Intseq(n, 19) eq Reverse(Intseq(n, 19))]; // Vincenzo Librandi, Mar 08 2015
  • Maple
    IsPalindromic := proc(n, Base)   local Conv, i;
       Conv := convert(n, base, Base);
    for i from 1 to nops(Conv) / 2 do:
        if Conv [i] <> Conv [nops(Conv) + 1 - i] then
           return false:
        fi:
    od:
    return true;
    end proc;
    Base := 19;
    A := [];
    for i from 1 to 10^6 do:
       S := convert(i, base, 10);
       V := 0;
       if i mod 10 = 0 then
          next;
       fi;
       for j from 1 to nops(S) do:
          V := V * 10 + S [j];
       od:
       for j from 0 to 10 do:
          V1 := V * 10^(nops(S) + j) + i;
          if IsPalindromic(V1, Base) then
             A := [op(A), V1];
          fi;
       od:
       V1 := (V - (V mod 10)) * 10^(nops(S) - 1) + i;
       if IsPalindromic(V1, Base) then
          A := [op(A), V1];
       fi;
    od:
    sort(A);
  • Mathematica
    palQ[n_, b_] := Block[{d = IntegerDigits[n, b]}, If[d == Reverse@ d, True, False]]; Select[Range[0, 10^6], And[palQ[#, 10], palQ[#, 19]] &] (* Michael De Vlieger, Mar 07 2015 *)
    b1=10; b2=19; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10^7}]; lst (* Vincenzo Librandi, Mar 08 2015 *)
  • PARI
    isok(n) = (n==0) || ((d = digits(n, 10)) && (Vecrev(d) == d) && (d = digits(n, 19)) && (Vecrev(d) == d)); \\ Michel Marcus, Mar 07 2015
    

A248889 Palindromic in base 10 and 18.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 171, 323, 343, 505, 595, 686, 848, 1661, 2112, 3773, 23332, 46664, 69996, 262262, 583385, 782287, 859958, 981189, 1254521, 1403041, 1832381, 39388393, 54411445, 55499455, 88844888, 118919811, 191010191
Offset: 1

Author

Mauro Fiorentini, Mar 05 2015

Keywords

Comments

a(54) > 10^12.

Examples

			848 in decimal is 2B2 in base 18, so 848 is in the sequence.
1661 in decimal is 525 in base 18, so 1661 is in the sequence.
1771 in decimal is 587 in base 18, which is not a palindrome, so 1771 is not in the sequence.
		

Programs

  • Magma
    [n: n in [0..2*10^7] | Intseq(n) eq Reverse(Intseq(n)) and Intseq(n,18) eq Reverse(Intseq(n,18))]; // Vincenzo Librandi, Mar 21 2015
    
  • Maple
    IsPalindromic := proc(n, Base)
        local Conv, i;
        Conv := convert(n, base, Base);
        for i from 1 to nops(Conv) / 2 do
            if Conv [i] <> Conv [nops(Conv) + 1 - i] then
                return false;
            fi:
        od:
        true;
    end proc:
    Base := 18;
    A := [];
    for i from 1 to 10^6 do:
       S := convert(i, base, 10);
       V := 0;
       if i mod 10 = 0 then
          next;
       fi;
       for j from 1 to nops(S) do:
          V := V * 10 + S [j];
       od:
       for j from 0 to 10 do:
          V1 := V * 10^(nops(S) + j) + i;
          if IsPalindromic(V1, Base) then
             A := [op(A), V1];
          fi;
       od:
       V1 := (V - (V mod 10)) * 10^(nops(S) - 1) + i;
       if IsPalindromic(V1, Base) then
          A := [op(A), V1];
       fi;
    od:
    sort(A);
  • Mathematica
    palindromicQ[n_, b_:10] := TrueQ[IntegerDigits[n, b] == Reverse[IntegerDigits[n, b]]]; Select[Range[0, 499], palindromicQ[#] && palindromicQ[#, 18] &] (* Alonso del Arte, Mar 21 2015 *)
  • PARI
    isok(n) = (n==0) || ((d = digits(n, 10)) && (Vecrev(d) == d) && (d = digits(n, 18)) && (Vecrev(d) == d)); \\ Michel Marcus, Mar 14 2015
    
  • Python
    def palgen10(l): # generator of palindromes of length <= 2*l
        if l > 0:
            yield 0
            for x in range(1,l+1):
                n = 10**(x-1)
                n2 = n*10
                for y in range(n,n2):
                    s = str(y)
                    yield int(s+s[-2::-1])
                for y in range(n,n2):
                    s = str(y)
                    yield int(s+s[::-1])
    def palcheck(n, b): # check if n is a palindrome in base b
        s = digits(n, b)
        return s == s[::-1]
    A248889_list = [n for n in palgen10(9) if palcheck(n, 18)]
    # Chai Wah Wu, Mar 23 2015

A128909 3D version of A005670. The problem is to dissect an n X n X n cube into smaller integer cubes, the gcd of whose sides is 1, using the smallest number of cubes. The gcd condition exclude dissecting a 6 X 6 X 6 cube into eight 3 X 3 X 3 cubes.

Original entry on oeis.org

1, 8, 20, 15, 50, 27, 71, 22, 39, 57, 125, 34
Offset: 1

Author

Mauro Fiorentini, Apr 23 2007

Keywords

Comments

As far as I know, no term, (except trivial cases) has been proved optimal. Repeated dissection, as in the above example, shows that if the side is a composite number mn, a(mn) <= a(m) + a(n) - 1. It is an open problem to find a number mn for which a(mn) < a(m) + a(n) - 1. Dissecting a cube with side n into a cube with side n - 1 and several unit cubes gives a trivial bound: a(n) <= 3n^2 - 3n + 2. Dissecting a cube with side n = 2k + 1 into a cube with side k + 1, 7 with side k and several unit cubes gives another trivial bound: a(n) <= (9n^2 - 12n + 31) / 4.

Examples

			a(4)=15 because a 4 X 4 X 4 cube can be dissected into 8 2 X 2 X 2, one of which can be dissected into 8 1 X 1 X 1.
		

References

  • Ainley, Stephen, Mathematical Puzzles, Prentice Hall, New York, 1983. p. 81.

Crossrefs

Cf. A005670.

A028307 Form a triangle with n numbers in top row; all other numbers are the sum of their parents. E.g.: 4 1 2 7; 5 3 9; 8 12; 20. The numbers must be positive and distinct and the final number is to be minimized. Sequence gives final number.

Original entry on oeis.org

1, 3, 8, 20, 43, 98, 212, 465, 1000, 2144, 4497, 9504, 19872, 41455, 85356, 178630, 363467, 757085, 1541998, 3183600, 6515066, 13357593, 27432649, 55914902, 114683858, 233517515, 478061719, 972479046, 1986013932
Offset: 1

Keywords

Comments

Suggested by Problem 401 of the All-Soviet-Union Mathematical Competitions 1961-1986. Two different links are available for this collection.

Examples

			Solutions for n = 1, 2, ... are:
  1;
  1, 2;
  2, 1, 4;
  4, 1, 2, 7;
  7, 2, 1, 4, 6;
  8, 6, 1, 3, 2, 10;
  ...
		

Crossrefs

Formula

From A.H.M. Smeets, Feb 25 2022: (Start)
a(n) > 2*a(n-1). Proof: Let x, y be the numbers in the second last row, then x >= a(n-1), y >= a(n-1) and x != y, so a(n) = x + y > 2*a(n-1).
It seems that a(n) > (4/3)*(2*a(n-1)-a(n-2)). (End)

Extensions

More terms from the author, Jul 03 2001