cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A330686 Primorial deflation of (nonzero) K-champion numbers: a(n) is the unique integer x such that A108951(x) = A307866(1+n).

Original entry on oeis.org

1, 4, 3, 8, 6, 12, 9, 24, 18, 48, 20, 36, 96, 40, 72, 30, 54, 80, 144, 60, 108, 160, 288, 120, 216, 320, 90, 576, 240, 432, 180, 480, 864, 360, 960, 720, 1920, 540, 252, 1440, 3840, 1080, 504, 2880, 1200, 2160, 1008, 5760, 2688, 2400, 4320, 2016, 11520, 3240, 4800, 1512, 8640, 4032, 23040, 1680, 6480, 9600, 3024, 17280, 8064, 7200
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2019

Keywords

Crossrefs

Formula

a(n) = A329900(A307866(1+n)).
a(n) = A122111(A353568(n)). - Antti Karttunen, May 20 2022

A333963 Intersection of A307866 and A333953, together with the number 2.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 144, 240, 288, 360, 480, 576, 720, 1152, 1440, 2160, 2880, 4320, 5760, 8640, 11520, 17280, 25920, 30240, 34560, 51840, 60480, 69120, 103680, 120960, 172800, 207360, 241920, 345600, 362880, 414720, 483840, 725760
Offset: 1

Views

Author

Amiram Eldar and David A. Corneth, Apr 15 2020

Keywords

Comments

Numbers that are both recursively superabundant numbers and K-champion numbers.

Crossrefs

A329900 Primorial deflation of n: starting from x = n, repeatedly divide x by the largest primorial A002110(k) that divides it, until x is an odd number. Then a(n) = Product prime(k_i), for primorial indices k_1 >= k_2 >= ..., encountered in the process.

Original entry on oeis.org

1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 6, 1, 2, 1, 16, 1, 3, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 5, 1, 32, 1, 2, 1, 9, 1, 2, 1, 8, 1, 3, 1, 4, 1, 2, 1, 24, 1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 10, 1, 2, 1, 64, 1, 3, 1, 4, 1, 2, 1, 18, 1, 2, 1, 4, 1, 3, 1, 16, 1, 2, 1, 6, 1, 2, 1, 8, 1, 5, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 3, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Comments

When applied to arbitrary n, the "primorial deflation" (term coined by Matthew Vandermast in A181815) induces the splitting of n to two factors A328478(n)*A328479(n) = n, where we call A328478(n) the non-deflatable component of n (which is essentially discarded), while A328479(n) is the deflatable component. Only if n is in A025487, then the entire n is deflatable, i.e., A328478(n) = 1 and A328479(n) = n.
According to Daniel Suteu, also the ratio (A319626(n) / A319627(n)) can be viewed as a "primorial deflation". That definition coincides with this one when restricted to terms of A025487, as for all k in A025487, A319626(k) = a(k), and A319627(k) = 1. - Antti Karttunen, Dec 29 2019

Crossrefs

Programs

  • Mathematica
    Array[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, 105] (* Michael De Vlieger, Dec 28 2019 *)
    Array[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, 105] (* Michael De Vlieger, Jan 11 2020 *)
  • PARI
    A329900(n) = { my(m=1, pp=1); while(1, forprime(p=2, ,if(n%p, if(2==p, return(m), break), n /= p; pp = p)); m *= pp); (m); };
    
  • PARI
    A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
    A276084(n) = { for(i=1,oo,if(n%prime(i),return(i-1))); }
    A329900(n) = if(n%2,1,prime(A276084(n))*A329900(A111701(n)));

Formula

For odd n, a(n) = 1, for even n, a(n) = A000040(A276084(n)) * a(A111701(n)).
For even n, a(n) = A000040(A276084(n)) * a(n/A002110(A276084(n))).
A108951(a(n)) = A328479(n), for n >= 1.
a(A108951(n)) = n, for n >= 1.
a(A328479(n)) = a(n), for n >= 1.
a(A328478(n)) = 1, for n >= 1.
a(A002110(n)) = A000040(n), for n >= 1.
a(A000142(n)) = A307035(n), for n >= 0.
a(A283477(n)) = A019565(n), for n >= 0.
a(A329886(n)) = A005940(1+n), for n >= 0.
a(A329887(n)) = A163511(n), for n >= 0.
a(A329602(n)) = A329888(n), for n >= 1.
a(A025487(n)) = A181815(n), for n >= 1.
a(A124859(n)) = A181819(n), for n >= 1.
a(A181817(n)) = A025487(n), for n >= 1.
a(A181821(n)) = A122111(n), for n >= 1.
a(A002182(n)) = A329902(n), for n >= 1.
a(A260633(n)) = A329889(n), for n >= 1.
a(A033833(n)) = A330685(n), for n >= 1.
a(A307866(1+n)) = A330686(n), for n >= 1.
a(A330687(n)) = A330689(n), for n >= 1.

A353568 Prime shadows of (nonzero) K-champion numbers.

Original entry on oeis.org

1, 3, 4, 5, 6, 10, 9, 14, 15, 22, 20, 21, 26, 28, 33, 30, 35, 44, 39, 42, 55, 52, 51, 66, 65, 68, 70, 57, 78, 85, 110, 102, 95, 130, 114, 170, 138, 182, 220, 190, 174, 238, 260, 230, 255, 266, 340, 290, 276, 285, 322, 380, 310, 418, 345, 476, 406, 460, 370, 510, 506, 435, 532, 434, 580, 483, 570, 638, 465, 644, 518
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2022

Keywords

Comments

Sequence is injective (no duplicate values occur) because A307866 (after its initial zero) is a subsequence of A025487.
The finite number of powerful (A001694) terms in A307866 implies a finite number of odd terms in this sequence.

Crossrefs

Programs

  • PARI
    v307866 = readvec("b307866_to.txt";) \\ Prepared from the b-file of A307866 with gawk ' { print $2 } ' < b307866.txt > b307866_to.txt
    A307866(n) = v307866[n];
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A353568(n) = A181819(A307866(1+n));

Formula

a(n) = A181819(A307866(1+n)).
a(n) = A122111(A330686(n)).

A333952 Recursively highly composite numbers: numbers m such that A067824(m) > A067824(k) for all k < m.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 144, 192, 240, 288, 360, 432, 480, 576, 720, 864, 960, 1152, 1440, 1728, 1920, 2160, 2304, 2880, 3456, 4320, 5760, 6912, 8640, 11520, 17280, 23040, 25920, 30240, 34560, 46080, 51840, 60480, 69120, 86400, 103680, 120960
Offset: 1

Views

Author

Amiram Eldar, Apr 11 2020

Keywords

Comments

This sequence is not to be confused with A333931.
The corresponding record values are 1, 2, 4, 6, 8, 16, 40, 52, 96, ...
Fink (2019) defined this sequence. He asked whether 720 is the largest term that is also highly composite number (A002182).
This is, except the terms 2, the sequence records of indices of A074206 for positive n as a(n) = 2*A074206(n), n>1, i.e. A307866. (formula from - Vladeta Jovovic, Jul 03 2005) - David A. Corneth, Apr 13 2020

Examples

			The first 6 terms of A067824 are 1, 2, 2, 4, 2, 6. The record values occur at 1, 2, 4, 6, the first 4 terms of this sequence.
		

Crossrefs

Programs

  • Mathematica
    d[1] = 1; d[n_] := d[n] = 1 + DivisorSum[n, d[#] &, # < n &]; seq={}; dm = 0; Do[d1 = d[n]; If[d1 > dm, dm = d1; AppendTo[seq, n]], {n, 1, 10^4}]; seq

A307867 Numbers m such that K(m)/m > K(j)/j for all j < m, where K(m) is the Kalmár function (A074206).

Original entry on oeis.org

1, 72, 96, 144, 240, 288, 480, 576, 720, 1152, 1440, 2880, 4320, 5760, 8640, 11520, 17280, 34560, 51840, 69120, 103680, 138240, 207360, 241920, 311040, 345600, 362880, 414720, 483840, 622080, 725760, 829440, 967680, 1244160, 1451520, 1935360, 2073600, 2419200
Offset: 1

Views

Author

Amiram Eldar, May 02 2019

Keywords

Comments

Subsequence of A307866.

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Total[a /@ Most[Divisors[n]]]; am = -1; s={}; Do[a1 = a[n]/n; If[a1 > am, AppendTo[s, n]; am = a1], {n, 1, 10000}]; s
Showing 1-6 of 6 results.