cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A329888 a(n) = A329900(A329602(n)); Heinz number of the even bisection (even-indexed parts) of the integer partition with Heinz number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 4, 1, 3, 1, 2, 3, 2, 1, 4, 5, 2, 3, 2, 1, 3, 1, 4, 3, 2, 5, 6, 1, 2, 3, 4, 1, 3, 1, 2, 3, 2, 1, 4, 7, 5, 3, 2, 1, 6, 5, 4, 3, 2, 1, 6, 1, 2, 3, 8, 5, 3, 1, 2, 3, 5, 1, 6, 1, 2, 5, 2, 7, 3, 1, 4, 9, 2, 1, 6, 5, 2, 3, 4, 1, 6, 7, 2, 3, 2, 5, 8, 1, 7, 3, 10, 1, 3, 1, 4, 5
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Comments

From Gus Wiseman, Aug 05 2021 and Antti Karttunen, Oct 13 2021: (Start)
Also the product of primes at even positions in the weakly decreasing list (with multiplicity) of prime factors of n. For example, the prime factors of 108 are (3,3,3,2,2), with even bisection (3,2), with product 6, so a(108) = 6.
Proof: A108951(n) gives a number with the same largest prime factor (A006530) and its exponent (A071178) as in n, and with each smaller prime p = 2, 3, 5, 7, ... < A006530(n) having as its exponent the partial sum of the exponents of all prime factors >= p present in n (with primes not present in n having the exponent 0). Then applying A000188 replaces each such "partial sum exponent" k with floor(k/2). Finally, A319626 replaces those halved exponents with their first differences (here the exponent of the largest prime present stays intact, because the next larger prime's exponent is 0 in n). It should be easy to see that if prime q is not present in n (i.e., does not divide it), then neither it is present in a(n). Moreover, if the partial sum exponent of q is odd and only one larger than the partial sum exponent of the next larger prime factor of n, then q will not be present in a(n), while in all other cases q is present in a(n). See also the last example.
(End)

Examples

			From _Gus Wiseman_, Aug 15 2021: (Start)
The list of all numbers with image 12 and their corresponding prime factors begins:
  144: (3,3,2,2,2,2)
  216: (3,3,3,2,2,2)
  240: (5,3,2,2,2,2)
  288: (3,3,2,2,2,2,2)
  336: (7,3,2,2,2,2)
  360: (5,3,3,2,2,2)
(End)
The positions from the left are indexed as 1, 2, 3, ..., etc, so e.g., for 240 we pick the second, the fourth and the sixth prime factor, 3, 2 and 2, to obtain a(240) = 3*2*2 = 12. For 288, we similarly pick the second (3), the fourth (2) and the sixth (2) to obtain a(288) = 3*2*2 = 12. - _Antti Karttunen_, Oct 13 2021
Consider n = 11945934 = 2*3*3*3*7*11*13*13*17. Its primorial inflation is A108951(11945934) = 96478365991115908800000 = 2^9 * 3^8 * 5^5 * 7^5 * 11^4 * 13^3 * 17^1. Applying A000188 to this halves each exponent (floored down if the exponent is odd), leaving the factors 2^4 * 3^4 * 5^2 * 7^2 * 11^2 * 13^1 = 2497294800. Then applying A319626 to this number retains the largest prime factor (and its exponent), and subtracts from the exponent of each of the rest of primes the exponent of the next larger prime, so from 2^4 * 3^4 * 5^2 * 7^2 * 11^2 * 13^1 we get 2^(4-4) * 3^(4-2) * 5^(2-2) * 7^(2-2) * 11^(2-1) * 13^1 = 3^2 * 11^1 * 13^1 = 1287 = a(11945934), which is obtained also by selecting every second prime from the list [17, 13, 13, 11, 7, 3, 3, 3, 2] and taking their product. - _Antti Karttunen_, Oct 15 2021
		

Crossrefs

A left inverse of A000290.
Positions of 1's are A008578.
Positions of primes are A168645.
The sum of prime indices of a(n) is A346700(n).
The odd version is A346701.
The odd non-reverse version is A346703.
The non-reverse version is A346704.
The version for standard compositions is A346705, odd A346702.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A001414 adds up prime factors, row sums of A027746.
A027187 counts partitions of even length, ranked by A028260.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A346633 adds up the even bisection of standard compositions.
A346698 adds up the even bisection of prime indices.

Programs

  • Mathematica
    Table[Times@@Last/@Partition[Reverse[Flatten[Apply[ConstantArray,FactorInteger[n],{1}]]],2],{n,100}] (* Gus Wiseman, Oct 13 2021 *)
  • PARI
    A329888(n) = A329900(A329602(n));
    
  • PARI
    A329888(n) = if(1==n,n,my(f=factor(n),m=1,p=0); forstep(k=#f~,1,-1,while(f[k,2], m *= f[k,1]^(p%2); f[k,2]--; p++)); (m)); \\ (After Wiseman's new interpretation) - Antti Karttunen, Sep 21 2021

Formula

A108951(a(n)) = A329602(n).
a(n^2) = n for all n >= 1.
a(n) * A346701(n) = n. - Gus Wiseman, Aug 07 2021
A056239(a(n)) = A346700(n). - Gus Wiseman, Aug 07 2021
Antti Karttunen, Sep 21 2021
From Antti Karttunen, Oct 13 2021: (Start)
For all x in A102750, a(x) = a(A253553(x)). (End)

Extensions

Name amended with Gus Wiseman's new interpretation - Antti Karttunen, Oct 13 2021

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A108951 Primorial inflation of n: Fully multiplicative with a(p) = p# for prime p, where x# is the primorial A034386(x).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 210, 8, 36, 60, 2310, 24, 30030, 420, 180, 16, 510510, 72, 9699690, 120, 1260, 4620, 223092870, 48, 900, 60060, 216, 840, 6469693230, 360, 200560490130, 32, 13860, 1021020, 6300, 144, 7420738134810, 19399380, 180180, 240, 304250263527210, 2520
Offset: 1

Views

Author

Paul Boddington, Jul 21 2005

Keywords

Comments

This sequence is a permutation of A025487.
And thus also a permutation of A181812, see the formula section. - Antti Karttunen, Jul 21 2014
A previous description of this sequence was: "Multiplicative with a(p^e) equal to the product of the e-th powers of all primes at most p" (see extensions), Giuseppe Coppoletta, Feb 28 2015

Examples

			a(12) = a(2^2) * a(3) = (2#)^2 * (3#) = 2^2 * 6 = 24
a(45) = (3#)^2 * (5#) = (2*3)^2 * (2*3*5) = 1080 (as 45 = 3^2 * 5).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f]>1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Table[a[n], {n, 1, 42}] (* Jean-François Alcover, Feb 24 2015 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Times @@ Prime@ Range@ PrimePi@ p, e}], {n, 42}] (* Michael De Vlieger, Mar 18 2017 *)
  • PARI
    primorial(n)=prod(i=1,primepi(n),prime(i))
    a(n)=my(f=factor(n)); prod(i=1,#f~, primorial(f[i,1])^f[i,2]) \\ Charles R Greathouse IV, Jun 28 2015
    
  • Python
    from sympy import primerange, factorint
    from operator import mul
    def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
    def a(n):
        f = factorint(n)
        return 1 if n==1 else reduce(mul, [P(i)**f[i] for i in f])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, May 14 2017
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    def p(f):
        return sharp_primorial(f[0])^f[1]
    [prod(p(f) for f in factor(n)) for n in range (1,51)]
    # Giuseppe Coppoletta, Feb 07 2015
    

Formula

Dirichlet g.f.: 1/(1-2*2^(-s))/(1-6*3^(-s))/(1-30*5^(-s))...
Completely multiplicative with a(p_i) = A002110(i) = prime(i)#. [Franklin T. Adams-Watters, Jun 24 2009; typos corrected by Antti Karttunen, Jul 21 2014]
From Antti Karttunen, Jul 21 2014: (Start)
a(1) = 1, and for n > 1, a(n) = n * a(A064989(n)).
a(n) = n * A181811(n).
a(n) = A002110(A061395(n)) * A331188(n). - [added Jan 14 2020]
a(n) = A181812(A048673(n)).
Other identities:
A006530(a(n)) = A006530(n). [Preserves the largest prime factor of n.]
A071178(a(n)) = A071178(n). [And also its exponent.]
a(2^n) = 2^n. [Fixes the powers of two.]
A067029(a(n)) = A007814(a(n)) = A001222(n). [The exponent of the least prime of a(n), that prime always being 2 for n>1, is equal to the total number of prime factors in n.]
(End)
From Antti Karttunen, Nov 19 2019: (Start)
Further identities:
a(A307035(n)) = A000142(n).
a(A003418(n)) = A181814(n).
a(A025487(n)) = A181817(n).
a(A181820(n)) = A181822(n).
a(A019565(n)) = A283477(n).
A001221(a(n)) = A061395(n).
A001222(a(n)) = A056239(n).
A181819(a(n)) = A122111(n).
A124859(a(n)) = A181821(n).
A085082(a(n)) = A238690(n).
A328400(a(n)) = A329600(n). (smallest number with the same set of distinct prime exponents)
A000188(a(n)) = A329602(n). (square root of the greatest square divisor)
A072411(a(n)) = A329378(n). (LCM of exponents of prime factors)
A005361(a(n)) = A329382(n). (product of exponents of prime factors)
A290107(a(n)) = A329617(n). (product of distinct exponents of prime factors)
A000005(a(n)) = A329605(n). (number of divisors)
A071187(a(n)) = A329614(n). (smallest prime factor of number of divisors)
A267115(a(n)) = A329615(n). (bitwise-AND of exponents of prime factors)
A267116(a(n)) = A329616(n). (bitwise-OR of exponents of prime factors)
A268387(a(n)) = A329647(n). (bitwise-XOR of exponents of prime factors)
A276086(a(n)) = A324886(n). (prime product form of primorial base expansion)
A324580(a(n)) = A324887(n).
A276150(a(n)) = A324888(n). (digit sum in primorial base)
A267263(a(n)) = A329040(n). (number of distinct nonzero digits in primorial base)
A243055(a(n)) = A329343(n).
A276088(a(n)) = A329348(n). (least significant nonzero digit in primorial base)
A276153(a(n)) = A329349(n). (most significant nonzero digit in primorial base)
A328114(a(n)) = A329344(n). (maximal digit in primorial base)
A062977(a(n)) = A325226(n).
A097248(a(n)) = A283478(n).
A324895(a(n)) = A324896(n).
A324655(a(n)) = A329046(n).
A327860(a(n)) = A329047(n).
A329601(a(n)) = A329607(n).
(End)
a(A181815(n)) = A025487(n), and A319626(a(n)) = A329900(a(n)) = n. - Antti Karttunen, Dec 29 2019
From Antti Karttunen, Jul 09 2021: (Start)
a(n) = A346092(n) + A346093(n).
a(n) = A346108(n) - A346109(n).
a(A342012(n)) = A004490(n).
a(A337478(n)) = A336389(n).
A336835(a(n)) = A337474(n).
A342002(a(n)) = A342920(n).
A328571(a(n)) = A346091(n).
A328572(a(n)) = A344592(n).
(End)
Sum_{n>=1} 1/a(n) = A161360. - Amiram Eldar, Aug 04 2022

Extensions

More terms computed by Antti Karttunen, Jul 21 2014
The name of the sequence was changed for more clarity, in accordance with the above remark of Franklin T. Adams-Watters (dated Jun 24 2009). It is implicitly understood that a(n) is then uniquely defined by completely multiplicative extension. - Giuseppe Coppoletta, Feb 28 2015
Name "Primorial inflation" (coined by Matthew Vandermast in A181815) prefixed to the name by Antti Karttunen, Jan 14 2020

A319626 Primorial deflation of n (numerator): Let f be the completely multiplicative function over the positive rational numbers defined by f(p) = A034386(p) for any prime number p; f constitutes a permutation of the positive rational numbers; let g be the inverse of f; for any n > 0, a(n) is the numerator of g(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 10, 11, 6, 13, 14, 5, 16, 17, 9, 19, 20, 21, 22, 23, 12, 25, 26, 27, 28, 29, 5, 31, 32, 33, 34, 7, 9, 37, 38, 39, 40, 41, 21, 43, 44, 15, 46, 47, 24, 49, 50, 51, 52, 53, 27, 55, 56, 57, 58, 59, 10, 61, 62, 63, 64, 65, 33, 67, 68, 69
Offset: 1

Views

Author

Rémy Sigrist, Sep 25 2018

Keywords

Comments

See A319627 for the corresponding denominators.
The restriction of f to the natural numbers corresponds to A108951.
The function g is completely multiplicative over the positive rational numbers with g(2) = 2 and g(q) = q/p for any pair (p, q) of consecutive prime numbers.
The ratio A319626(n)/A319627(n) can be viewed as a "primorial deflation" of n (see also A329900), with the inverse operation being n = A108951(A319626(n)) / A108951(A319627(n)), where A319627(k) = 1 for all k in A025487. - Daniel Suteu, Dec 29 2019

Examples

			f(21/5) = (2*3) * (2*3*5*7) / (2*3*5) = 42, hence g(42) = 21/5 and a(42) = 21.
		

Crossrefs

A left inverse of A108951. Coincides with A329900 on A025487.
Cf. A006530, A053585, A064989, A181815, A307035, A319627, A319630, A329902, A330749, A330750 (rgs-transform), A330751 (ordinal transform).

Programs

  • Mathematica
    Array[#1/GCD[#1, #2] & @@ {#, Apply[Times, Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#]]]} &, 120] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    a(n) = my (f=factor(n)); numerator(prod(i=1, #f~, my (p=f[i,1]); (p/if (p>2, precprime(p-1), 1))^f[i,2]))

Formula

a(n) = n / gcd(n, A064989(n)) = n / A330749(n).
a(n) <= n with equality iff n belongs to A319630.
A006530(a(n)) = A006530(n).
A053585(a(n)) = A053585(n).
From Antti Karttunen, Dec 29 2019: (Start)
a(A108951(n)) = n.
a(A025487(n)) = A329900(A025487(n)) = A181815(n).
Many of the formulas given in A329900 apply here as well:
a(n!) = A307035(n), a(A002182(n)) = A329902(n), and so on.
(End)

Extensions

"Primorial deflation" prefixed to the name by Antti Karttunen, Dec 29 2019

A181815 a(n) = largest integer such that, when any of its divisors divides A025487(n), the quotient is a member of A025487.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 12, 5, 32, 9, 24, 10, 64, 18, 48, 20, 128, 36, 15, 96, 7, 27, 40, 256, 72, 30, 192, 14, 54, 80, 512, 144, 60, 384, 28, 108, 25, 160, 1024, 45, 288, 21, 81, 120, 768, 56, 216, 50, 320, 2048, 90, 576, 11, 42, 162, 240, 1536, 112, 432, 100, 640, 4096, 180, 1152
Offset: 1

Views

Author

Matthew Vandermast, Nov 30 2010

Keywords

Comments

A permutation of the natural numbers.
The number of divisors of a(n) equals the number of ordered factorizations of A025487(n) as A025487(j)*A025487(k). Cf. A182762.
From Antti Karttunen, Dec 28 2019: (Start)
Rearranges terms of A108951 into ascending order, as A108951(a(n)) = A025487(n).
The scatter plot looks like a curtain of fractal spray, which is typical for many of the so-called "entanglement permutations". Indeed, according to the terminology I use in my 2016-2017 paper, this sequence is obtained by entangling the complementary pair (A329898, A330683) with the complementary pair (A005843, A003961), which gives the following implicit recurrence: a(A329898(n)) = 2*a(n) and a(A330683(n)) = A003961(a(n)). An explicit form is given in the formula section.
(End)

Examples

			For any divisor d of 9 (d = 1, 3, 9), 36/d (36, 12, 4) is a member of A025487. 9 is the largest number with this relationship to 36; therefore, since 36 = A025487(11), a(11) = 9.
		

Crossrefs

If this sequence is considered the "primorial deflation" of A025487(n) (see first formula), the primorial inflation of n is A108951(n), and the primorial inflation of A025487(n) is A181817(n).
A181820(n) is another mapping from the members of A025487 to the positive integers.

Programs

  • Mathematica
    (* First, load the program at A025487, then: *)
    Map[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[g, ReplacePart[Table[0, {PrimePi[g[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, g]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, Union@ Flatten@ f@ 6] (* Michael De Vlieger, Dec 28 2019 *)
  • PARI
    A181815(n) = A329900(A025487(n)); \\ Antti Karttunen, Dec 24 2019

Formula

If A025487(n) is considered in its form as Product A002110(i)^e(i), then a(n) = Product p(i)^e(i). If A025487(n) is instead considered as Product p(i)^e(i), then a(n) = Product (p(i)/A008578(i))^e(i).
a(n) = A122111(A181820(n)). - Matthew Vandermast, May 21 2012
From Antti Karttunen, Dec 24-29 2019: (Start)
a(n) = Product_{i=1..A051282(n)} A000040(A304886(i)).
a(n) = A329900(A025487(n)) = A319626(A025487(n)).
a(n) = A163511(A329905(n)).
For n > 1, if A330682(n) = 1, then a(n) = A003961(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
A252464(a(n)) = A329907(n).
A330690(a(n)) = A050378(n).
a(A306802(n)) = A329902(n).
(End)

A319627 Primorial deflation of n (denominator): Let f be the completely multiplicative function over the positive rational numbers defined by f(p) = A034386(p) for any prime number p; f constitutes a permutation of the positive rational numbers; let g be the inverse of f; for any n > 0, a(n) is the denominator of g(n).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 5, 1, 4, 3, 7, 1, 11, 5, 2, 1, 13, 2, 17, 3, 10, 7, 19, 1, 9, 11, 8, 5, 23, 1, 29, 1, 14, 13, 3, 1, 31, 17, 22, 3, 37, 5, 41, 7, 4, 19, 43, 1, 25, 9, 26, 11, 47, 4, 21, 5, 34, 23, 53, 1, 59, 29, 20, 1, 33, 7, 61, 13, 38, 3, 67, 1, 71, 31, 6
Offset: 1

Views

Author

Rémy Sigrist, Sep 25 2018

Keywords

Comments

See A319626 for the corresponding numerators and additional comments.

Examples

			f(21/5) = (2*3) * (2*3*5*7) / (2*3*5) = 42, hence g(42) = 21/5 and a(42) = 5.
		

Crossrefs

Cf. A025487 (positions of 1's), A064989, A329900, A358217 [= bigomega(a(n))].
Cf. A319626 (numerators, see comments there).
Cf. also A307035, A337377, A348990 [= a(A003961(n))], A349169 (odd numbers k such that A348993(k) = a(k)), A354365/A354366.

Programs

  • Mathematica
    Array[#2/GCD[#1, #2] & @@ {#, Apply[Times, Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#]]]} &, 120] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    a(n) = my (f=factor(n)); denominator(prod(i=1, #f~, my (p=f[i,1]); (p/if (p>2, precprime(p-1), 1))^f[i,2]))

Formula

a(n) = A064989(n) / gcd(n, A064989(n)).
a(n) = 1 iff n belongs to A025487.

Extensions

"Primorial deflation" prefixed to the name by Antti Karttunen, Apr 29 2022

A329886 Primorial inflation of Doudna-tree: a(0) = 1, a(1) = 2; for n > 1, if n is even, a(n) = A283980(a(n/2)), and if n is odd, then a(n) = 2*a((n-1)/2).

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 36, 8, 210, 60, 180, 24, 900, 72, 216, 16, 2310, 420, 1260, 120, 6300, 360, 1080, 48, 44100, 1800, 5400, 144, 27000, 432, 1296, 32, 30030, 4620, 13860, 840, 69300, 2520, 7560, 240, 485100, 12600, 37800, 720, 189000, 2160, 6480, 96, 5336100, 88200, 264600, 3600, 1323000, 10800, 32400, 288, 9261000
Offset: 0

Views

Author

Antti Karttunen, Dec 24 2019

Keywords

Examples

			This irregular table can be represented as a binary tree. Each child to the left is obtained by applying A283980 to the parent, and each child to the right is obtained by doubling the parent:
                                     1
                                     |
                  ...................2...................
                 6                                       4
      30......../ \........12                 36......../ \........8
      / \                 / \                 / \                 / \
     /   \               /   \               /   \               /   \
    /     \             /     \             /     \             /     \
  210      60         180     24          900      72         216      16
etc.
A329887 is the mirror image of the same tree. See also A342000.
		

Crossrefs

Programs

  • Mathematica
    Block[{a}, a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ@ n, (Times @@ Map[Prime[PrimePi@#1 + 1]^#2 & @@ # &, FactorInteger[#]] - Boole[# == 1])*2^IntegerExponent[#, 2] &[a[n/2]], 2 a[(n - 1)/2]]; Array[a, 57, 0]]
    (* or, via Doudna *)
    Map[Times @@ Flatten@ MapIndexed[ConstantArray[Prime[First[#2]], #1] &, Table[LengthWhile[#1, # >= j &], {j, #2}] & @@ {#, Max[#]} &@ Sort[Flatten[ConstantArray[PrimePi@#1, #2] & @@@ FactorInteger[#]], Greater]] &, Nest[Append[#1, Prime[1 + BitLength[#2] - DigitCount[#2, 2, 1]]*#1[[#2 - 2^Floor@ Log2@ #2 + 1]]] & @@ {#, Length@ #} &, {1}, 57] ] (* Michael De Vlieger, Mar 05 2021 *)
  • PARI
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A329886(n) = if(n<2,1+n,if(!(n%2),A283980(A329886(n/2)),2*A329886(n\2)));

Formula

a(0) = 1, a(1) = 2; for n > 1, if n is even, a(n) = A283980(a(n/2)), and if n is odd, then a(n) = 2*a((n-1)/2).
a(n) = A108951(A005940(1+n)).
For n >= 1, a(n) = A329887(A054429(n)).

Extensions

Name amended by Antti Karttunen, Mar 05 2021

A329902 Primorial deflation of the n-th highly composite number: the unique integer k such that A108951(k) = A002182(n).

Original entry on oeis.org

1, 2, 4, 3, 6, 12, 9, 24, 10, 20, 15, 40, 30, 60, 28, 21, 56, 42, 84, 63, 168, 126, 336, 140, 66, 189, 280, 132, 99, 264, 198, 528, 220, 396, 297, 440, 792, 156, 117, 312, 234, 624, 260, 468, 351, 520, 936, 390, 1040, 1872, 780, 585, 306, 1560, 340, 612, 459, 680, 1224, 510, 1360, 2448, 1020, 765, 342, 2040, 1530, 684, 513
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Map[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, Take[Import["https://oeis.org/b002182.txt", "Data"][[All, -1]], 69] ] (* Michael De Vlieger, Jan 13 2020, imports b-file at A002182 *)

Formula

a(n) = A329900(A002182(n)) = A319626(A002182(n)).
a(n) = A181815(A306802(n)).
A108951(a(n)) = A002182(n). [Highly composite numbers (undeflated)]
A056239(a(n)) = A112778(n). [Number of prime factors, counted with multiplicity]
A001222(a(n)) = A112779(n). [Largest exponent in the prime factorization]
A329605(a(n)) = A002183(n). [Number of divisors]
A329040(a(n)) = A324381(n).
A324888(a(n)) = A324382(n).
a(A330748(n)) = A330743(n).

Extensions

More linking formulas added by Antti Karttunen, Jan 13 2020

A336389 The least positive integer k for which A336835(k) >= n, where A336835(k) is the number of iterations of x -> A003961(x) needed before the result is deficient (sigma(x) < 2x), when starting from x=k.

Original entry on oeis.org

1, 6, 120, 19399380, 195534950863140268380, 538938984694949877040715541221415046162838700, 216487559804430601784907786655491617909711008142914104790481010259258659171900
Offset: 0

Views

Author

Antti Karttunen, Aug 07 2020

Keywords

Comments

For n > 0, the least k such that for at least n-1 iterations of map x -> A003961(x), starting from x=k, x stays nondeficient. In other words, from each a(n) starts a chain of at least n nondeficient numbers (A023196) obtained by successive prime shifts, e.g, for a(3) we have: 19399380 -> 334639305 -> 5391411025, where -> stands for applying A003961, the prime shift towards larger primes.
After 1 all other terms here are even, because if an odd number k is nondeficient, then A064989(k) is nondeficient also, where A064989 is the prime shift towards smaller primes. Moreover, because A047802 is defined for every n >= 0, also this sequence is.
From Peter Munn, Aug 13 2020 (Start)
Upper bounds for a(4) and a(5) are:
a(4) <= 195534950863140268380 = A064989(A064989(A064989(20169691981106018776756331))) = A337202(3).
a(5) <= 538938984694949877040715541221415046162838700 = A064989^4((A047802(4)*17*19)/137).
(End)
From David A. Corneth, Aug 21 2020: (Start)
Subsequence of A025487.
Let prime(n)# be the n-th primorial number, A002110(n) = A034386(prime(n)). Then:
a(6) <= 191# * 7#;
a(7) <= 311# * 5#;
a(8) <= 457# * 5#.
(End)
That each term occurs in A025487 follows because (1), the abundancy index of prime(i)^e is larger than that of prime(i+1)^e, that is, sigma(prime(i)^e)/prime(i)^e > sigma(prime(i+1)^e)/prime(i+1)^e, and (2) because the abundancy index of p^(e+d) * q^e is larger than that of p^e * q^(e+d), where p and q are distinct primes, p < q, and e, d > 0. Thus, for any n, we can first find a "prime-factorization compressed version" of it, A071364(n), and then sort the exponents to the non-ascending order with A046523 (and actually, A046523(A071364(n)) = A046523(n), so we need to apply just A046523), to get a term x of A025487, that certainly have the abundancy index >= n [and this inequivalence stays same for their successive prime shifts as well, the abundancy index of A003961(x) being at least that of A003961(n), etc.], and as A046523(n) <= n for all n, it is guaranteed that the least k for which A336835(k) >= n are found from A025487, which is the range of A046523.

Crossrefs

From term a(2) = 120 onward a subsequence of A337386.

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A336835(n) = { my(i=0); while(sigma(n) >= (n+n), i++; n = A003961(n)); (i); };
    A336389(n) = for(i=1,oo,if(A336835(i)>=n,return(i)));

Formula

For n >= 0, A336835(a(n)) >= n.
For all n >= 1, a(n) <= A337202(n-1) [= 2*A246277(A047802(n-1))].
a(n) = A025487(A337477(n)).
a(n) = A108951(A337478(n)).

Extensions

a(4) - a(6) from combined work of David A. Corneth and Peter Munn Aug 13-26 2020
Showing 1-10 of 25 results. Next