cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A346096 Numerator of the primorial deflation of A276086(A108951(n)): a(n) = A319626(A324886(n)).

Original entry on oeis.org

2, 3, 5, 9, 7, 25, 11, 5, 7, 49, 13, 625, 17, 121, 117649, 25, 19, 49, 23, 2401, 1771561, 169, 29, 175, 14641, 289, 55, 14641, 31, 26411, 37, 21, 4826809, 361, 299393809, 2401, 41, 529, 24137569, 11, 43, 13, 47, 28561, 161051, 841, 53, 343, 6311981, 214358881, 47045881, 83521, 59, 3025, 48841, 214358881, 148035889, 961
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Comments

Numerator of ratio A324886(n) / A329044(n).

Crossrefs

Programs

Formula

a(n) = A319626(A324886(n)).
a(n) = A324886(n) / A346095(n) = A324886(n) / gcd(A324886(n), A329044(n)).
For n >= 1, A108951(A346096(n)) / A108951(A346097(n)) = A324886(n).
For n > 1, a(n) = A003961(A346098(n)).

A354365 Numerators of Dirichlet inverse of primorial deflation fraction A319626(n) / A319627(n).

Original entry on oeis.org

1, -2, -3, 0, -5, 3, -7, 0, 0, 10, -11, 0, -13, 14, 5, 0, -17, 0, -19, 0, 21, 22, -23, 0, 0, 26, 0, 0, -29, -5, -31, 0, 33, 34, 7, 0, -37, 38, 39, 0, -41, -21, -43, 0, 0, 46, -47, 0, 0, 0, 51, 0, -53, 0, 55, 0, 57, 58, -59, 0, -61, 62, 0, 0, 65, -33, -67, 0, 69, -14, -71, 0, -73, 74, 0, 0, 11, -39, -79, 0, 0, 82
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2022

Keywords

Comments

Because the ratio n / A064989(n) = A319626(n) / A319627(n) is multiplicative, so is also its Dirichlet inverse (which also is a sequence of rational numbers). This sequence gives the numerators when presented in its lowest terms, while A354366 gives the denominators. See the examples.

Examples

			The ratio a(n)/A354366(n) for n = 1..22: 1, -2, -3/2, 0, -5/3, 3, -7/5, 0, 0, 10/3, -11/7, 0, -13/11, 14/5, 5/2, 0, -17/13, 0, -19/17, 0, 21/10, 22/7.
		

Crossrefs

Cf. A013929 (positions of 0's), A055615, A319626, A319627, A354350.
Cf. A354366 (denominators).
Cf. also A349629, A354351, A354827.

Programs

  • PARI
    A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A354365(n) = numerator((moebius(n)*n)/A064989(n));

Formula

a(n) = A055615(n) / gcd(A055615(n), A064989(n)).

A354366 Denominators of Dirichlet inverse of primorial deflation fraction A319626(n) / A319627(n).

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 5, 1, 1, 3, 7, 1, 11, 5, 2, 1, 13, 1, 17, 1, 10, 7, 19, 1, 1, 11, 1, 1, 23, 1, 29, 1, 14, 13, 3, 1, 31, 17, 22, 1, 37, 5, 41, 1, 1, 19, 43, 1, 1, 1, 26, 1, 47, 1, 21, 1, 34, 23, 53, 1, 59, 29, 1, 1, 33, 7, 61, 1, 38, 3, 67, 1, 71, 31, 1, 1, 5, 11, 73, 1, 1, 37, 79, 1, 39, 41, 46, 1, 83, 1, 55, 1, 58
Offset: 1

Views

Author

Antti Karttunen, Jun 07 2022

Keywords

Comments

Equally, denominators of Dirichlet inverse of fraction n / A064989(n). See also comments in A354365.

Crossrefs

Cf. A055615, A064989, A319626, A319627, A354360 (positions of 1's).
Cf. A354365 (numerators).
Cf. also A349630.

Programs

  • PARI
    A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A354366(n) = denominator((moebius(n)*n)/A064989(n));

Formula

a(n) = A064989(n) / gcd(A055615(n), A064989(n)).

A346098 a(n) = A064989(A346096(n)) = A064989(A319626(A324886(n))).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 7, 3, 5, 25, 11, 81, 13, 49, 15625, 9, 17, 25, 19, 625, 117649, 121, 23, 45, 2401, 169, 21, 2401, 29, 4375, 31, 10, 1771561, 289, 14235529, 625, 37, 361, 4826809, 7, 41, 11, 43, 14641, 16807, 529, 47, 125, 2093663, 5764801, 24137569, 28561, 53, 441, 20449, 5764801, 47045881, 841, 59, 343, 61, 961, 1331, 100, 396067447082177
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Crossrefs

Cf. A064989, A319626, A324886, A346095, A346096, A346097, A346099 [= gcd(n, a(n))].

Programs

Formula

A330742 a(n) = n / gcd(A309639(n), A319626(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 6, 1, 2, 3, 1, 1, 2, 1, 4, 7, 2, 1, 8, 1, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 4, 1, 2, 3, 5, 1, 14, 1, 4, 15, 2, 1, 6, 1, 2, 3, 4, 1, 2, 5, 7, 3, 2, 1, 12, 1, 2, 7, 1, 5, 6, 1, 4, 23, 10, 1, 8, 1, 2, 3, 4, 7, 6, 1, 5, 1, 2, 1, 28, 5, 2, 3, 8, 1, 30, 7, 4, 3, 2, 5, 6, 1, 2, 9, 4, 1, 6, 1, 8, 105
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2019

Keywords

Crossrefs

Programs

Formula

a(n) = n / A330741(n) = n / gcd(A309639(n), A319626(n)).

A346100 a(n) = A100995(gcd(n, A064989(A319626(A324886(n))))).

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2021

Keywords

Crossrefs

Programs

  • PARI
    A064989(n) = { my(f = factor(n)); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
    A319626(n) = (n / gcd(n, A064989(n)));
    A346100(n) = isprimepower(gcd(n, A064989(A319626(A324886(n))))); \\ Rest of program given in A324886.

Formula

a(n) = A100995(A346099(n)) = A100995(gcd(n, A064989(A319626(A324886(n))))).

A330741 a(n) = gcd(A309639(n), A319626(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 2, 13, 7, 5, 16, 17, 9, 19, 5, 3, 11, 23, 3, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 7, 9, 37, 19, 13, 8, 41, 3, 43, 11, 3, 23, 47, 8, 49, 25, 17, 13, 53, 27, 11, 8, 19, 29, 59, 5, 61, 31, 9, 64, 13, 11, 67, 17, 3, 7, 71, 9, 73, 37, 25, 19, 11, 13, 79, 16, 81, 41, 83, 3, 17, 43, 29, 11, 89, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(A309639(n), A319626(n)).
a(n) = n / A330742(n).

A330750 Lexicographically earliest infinite sequence such that a(i) = a(j) => A319626(i) = A319626(j) for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 5, 14, 15, 8, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 5, 27, 28, 29, 30, 6, 8, 31, 32, 33, 34, 35, 18, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 24, 47, 48, 49, 50, 51, 9, 52, 53, 54, 55, 56, 29, 57, 58, 59, 13, 60, 61, 62, 63, 22, 64, 10, 33, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 38, 76
Offset: 1

Views

Author

Antti Karttunen, Dec 29 2019

Keywords

Comments

Restricted growth sequence transform of A319626, where A319626(n) = n / A330749(n) = n / gcd(n, A064989(n)).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A319626(n) = (n / gcd(n, A064989(n)));
    v330750 = rgs_transform(vector(up_to, n, A319626(n)));
    A330750(n) = v330750[n];

A330751 Number of values of k, 1 <= k <= n, with A319626(k) = A319626(n), where A319626(n) gives the numerator of rational valued primorial deflation of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 30 2019

Keywords

Comments

Ordinal transform of A319626.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A319626(n) = (n / gcd(n, A064989(n)));
    v330751 = ordinal_transform(vector(up_to, n, A319626(n)));
    A330751(n) = v330751[n];

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022
Showing 1-10 of 36 results. Next