cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A330743 a(n) is the first term k of A329902 for which A056239(k) = n.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 40, 60, 84, 168, 336, 528, 792, 936, 1872, 2448, 3060, 4560, 4788, 8280, 15456, 23184, 29232, 31248, 62496, 74592, 124320, 137760, 144480, 157920, 315840, 356160, 559680, 623040, 644160, 966240, 1061280, 1124640, 1686960, 1734480, 2049840, 2218320, 2330640, 2499120, 4165200, 4539600, 4726800, 4820400
Offset: 0

Views

Author

Antti Karttunen, Jan 13 2020

Keywords

Comments

Note that in contrast to A330744 this is not monotonic. The first point where a(n) > a(n+1) occurs is at a(120) = 5481774144 > a(121) = 5452302240. See also comment in A328521, whose primorial deflation this sequence is.
a(n-1) differs from A330744(n) at n = 17, 19, 21, 51, 52, 55, 56, 57, 58, 59, 60, 61, ...

Crossrefs

Primorial deflation of A328521.
Cf. also A330744.

Programs

  • PARI
    A330743(n) = { for(k=1,oo,if(A056239(A329902(k))==n,return(A329902(k)))); };
    
  • PARI
    v329902 = readvec("a329902.txt"); \\ File for the first 779674 terms of A329902 as prepared by Michael De Vlieger.
    A056239(n) = if(1==n,0,my(f=factor(n)); sum(i=1, #f~, f[i,2] * primepi(f[i,1])));
    A330743list() = { my(m=Map(), lista=List([]), t); for(i=1, #v329902, t = A056239(v329902[i]); if(!mapisdefined(m,t), mapput(m,t,v329902[i]))); for(n=0,oo,if(mapisdefined(m,n,&t), listput(lista,t), return(Vec(lista)))); };
    v330743 = A330743list();
    A330743(n) = v330743[1+n];
    for(n=0,#v330743-1,write("b330743.txt", n, " ", A330743(n)));

Formula

a(n) = A329902(min{i: A056239(A329902(i))==n}).
a(n) = A329902(A330748(n)).
a(n) = A329900(A328521(n)) = A319626(A328521(n)).

A056239 If n = Product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime and c_k >= 0 then a(n) = Sum_{k >= 1} k*c_k.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 5, 4, 7, 5, 8, 5, 6, 6, 9, 5, 6, 7, 6, 6, 10, 6, 11, 5, 7, 8, 7, 6, 12, 9, 8, 6, 13, 7, 14, 7, 7, 10, 15, 6, 8, 7, 9, 8, 16, 7, 8, 7, 10, 11, 17, 7, 18, 12, 8, 6, 9, 8, 19, 9, 11, 8, 20, 7, 21, 13, 8, 10, 9, 9, 22, 7, 8, 14, 23, 8, 10, 15, 12, 8, 24, 8, 10
Offset: 1

Views

Author

Leroy Quet, Aug 19 2000

Keywords

Comments

A pseudo-logarithmic function in the sense that a(b*c) = a(b)+a(c) and so a(b^c) = c*a(b) and f(n) = k^a(n) is a multiplicative function. [Cf. A248692 for example.] Essentially a function from the positive integers onto the partitions of the nonnegative integers (1->0, 2->1, 3->2, 4->1+1, 5->3, 6->1+2, etc.) so each value a(n) appears A000041(a(n)) times, first with the a(n)-th prime and last with the a(n)-th power of 2. Produces triangular numbers from primorials. - Henry Bottomley, Nov 22 2001
Michael Nyvang writes (May 08 2006) that the Danish composer Karl Aage Rasmussen discovered this sequence in the 1990's: it has excellent musical properties.
All A000041(a(n)) different n's with the same value a(n) are listed in row a(n) of triangle A215366. - Alois P. Heinz, Aug 09 2012
a(n) is the sum of the parts of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(33) = 7 because the partition with Heinz number 33 = 3 * 11 is [2,5]. - Emeric Deutsch, May 19 2015

Examples

			a(12) = 1*2 + 2*1 = 4, since 12 = 2^2 *3^1 = (p_1)^2 *(p_2)^1.
		

Crossrefs

Programs

  • Haskell
    a056239 n = sum $ zipWith (*) (map a049084 $ a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Apr 27 2013
    
  • Maple
    # To get 10000 terms. First make prime table: M:=10000; pl:=array(1..M); for i from 1 to M do pl[i]:=0; od: for i from 1 to M do if ithprime(i) > M then break; fi; pl[ithprime(i)]:=i; od:
    # Decode Maple's amazing syntax for factoring integers: g:=proc(n) local e,p,t1,t2,t3,i,j,k; global pl; t1:=ifactor(n); t2:=nops(t1); if t2 = 2 and whattype(t1) <> `*` then p:=op(1,op(1,t1)); e:=op(2,t1); t3:=pl[p]*e; else
    t3:=0; for i from 1 to t2 do j:=op(i,t1); if nops(j) = 1 then e:=1; p:=op(1,j); else e:=op(2,j); p:=op(1,op(1,j)); fi; t3:=t3+pl[p]*e; od: fi; t3; end; # N. J. A. Sloane, May 10 2006
    A056239 := proc(n) add( numtheory[pi](op(1,p))*op(2,p), p = ifactors(n)[2]) ; end proc: # R. J. Mathar, Apr 20 2010
    # alternative:
    with(numtheory): a := proc (n) local B: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: add(B(n)[i], i = 1 .. nops(B(n))) end proc: seq(a(n), n = 1 .. 130); # Emeric Deutsch, May 19 2015
  • Mathematica
    a[1] = 0; a[2] = 1; a[p_?PrimeQ] := a[p] = PrimePi[p];
    a[n_] := a[n] = Total[#[[2]]*a[#[[1]]] & /@ FactorInteger[n]]; a /@ Range[91] (* Jean-François Alcover, May 19 2011 *)
    Table[Total[FactorInteger[n] /. {p_, c_} /; p > 0 :> PrimePi[p] c], {n, 91}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    A056239(n) = if(1==n,0,my(f=factor(n)); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); \\ Antti Karttunen, Oct 26 2014, edited Jan 13 2020
    
  • Python
    from sympy import primepi, factorint
    def A056239(n): return sum(primepi(p)*e for p, e in factorint(n).items()) # Chai Wah Wu, Jan 01 2023
  • Scheme
    (require 'factor) ;; Uses the function factor available in Aubrey Jaffer's SLIB Scheme library.
    (define (A056239 n) (apply + (map A049084 (factor n))))
    ;; Antti Karttunen, Oct 26 2014
    

Formula

Totally additive with a(p) = PrimePi(p), where PrimePi(n) = A000720(n).
a(n) = Sum_{k=1..A001221(n)} A049084(A027748(k))*A124010(k). - Reinhard Zumkeller, Apr 27 2013
From Antti Karttunen, Oct 11 2014: (Start)
a(n) = n - A178503(n).
a(n) = A161511(A156552(n)).
a(n) = A227183(A243354(n)).
For all n >= 0:
a(A002110(n)) = A000217(n). [Cf. Henry Bottomley's comment above.]
a(A005940(n+1)) = A161511(n).
a(A243353(n)) = A227183(n).
Also, for all n >= 1:
a(A241909(n)) = A243503(n).
a(A122111(n)) = a(n).
a(A242424(n)) = a(n).
A248692(n) = 2^a(n). (End)
a(n) < A329605(n), a(n) = A001222(A108951(n)), a(A329902(n)) = A112778(n). - Antti Karttunen, Jan 14 2020

A002182 Highly composite numbers: numbers n where d(n), the number of divisors of n (A000005), increases to a record.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160
Offset: 1

Views

Author

Keywords

Comments

Where record values of d(n) occur: d(n) > d(k) for all k < n.
A002183 is the RECORDS transform of A000005, i.e., lists the corresponding values d(n) for n in A002182.
Flammenkamp's page also has a copy of the missing Siano paper.
Highly composite numbers are the product of primorials, A002110. See A112779 for the number of primorial terms in the product of a highly composite number. - Jud McCranie, Jun 12 2005
Sigma and tau for highly composite numbers through the 146th entry conform to a power fit as follows: log(sigma)=A*log(tau)^B where (A,B) =~ (1.45,1.38). - Bill McEachen, May 24 2006
a(n) often corresponds to P(n,m) = number of permutations of n things taken m at a time. Specifically, if start=1, pointers 1-6, 9, 10, 13-15, 17-19, 22, 23, 28, 34, 37, 43, 52, ... An example is a(37)=665280, which is P(12,6)=12!/(12-6)!. - Bill McEachen, Feb 09 2009
Concerning the previous comment, if m=1, then P(n,m) can represent any number. So let's assume m > 1. Searching the first 1000 terms, the only indices of terms of the form P(n,m) are 4, 5, 6, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 27, 28, 31, 34, 37, 41, 43, 44, 47, 50, 52, and 54. Note that a(44) = 4324320 = P(2079,2). See A163264. - T. D. Noe, Jun 10 2009
A large number of highly composite numbers have 9 as their digit root. - Parthasarathy Nambi, Jun 07 2009
Because 9 divides all highly composite numbers greater than 1680, those numbers have digital root 9. - T. D. Noe, Jul 24 2009
See A181309 for highly composite numbers that are not highly abundant.
a(n) is also defined by the recurrence: a(1) = 1, a(n+1)/sigma(a(n+1)) < a(n) / sigma(a(n)). - Michel Lagneau, Jan 02 2012 [NOTE: This "definition" is wrong (a(20)=7560 does not satisfy this inequality) and incomplete: It does not determine a sequence uniquely, e.g., any subsequence would satisfy the same relation. The intended meaning is probably the definition of the (different) sequence A004394. - M. F. Hasler, Sep 13 2012]
Up to a(1000), the terms beyond a(5) = 12 resp. beyond a(9) = 60 are a multiples of these. Is this true for all subsequent terms? - M. F. Hasler, Sep 13 2012 [Yes: see EXAMPLE in A199337! - M. F. Hasler, Jan 03 2020]
Differs from the superabundant numbers from a(20)=7560 on, which is not in A004394. The latter is not a subsequence of A002182, as might appear from considering the displayed terms: The two sequences have only 449 terms in common, the largest of which is A002182(2567) = A004394(1023). See A166735 for superabundant numbers that are not highly composite, and A004394 for further information. - M. F. Hasler, Sep 13 2012
Subset of A067128 and of A025487. - David A. Corneth, May 16 2016, Jan 03 2020
It seems that a(n) +- 1 is often prime. For n <= 1000 there are 210 individual primes and 17 pairs of twin primes. See link to Lim's paper below. - Dmitry Kamenetsky, Mar 02 2019
There are infinitely many numbers in this sequence and a(n+1) <= 2*a(n), because it is sufficient to multiply a(n) by 2 to get a number having more divisors. (This proves Guess 0 in the Lim paper.) For n = (1, 2, 4, 5, 9, 13, 18, ...) one has equality in this bound, but asymptotically a(n+1)/a(n) goes to 1, cf. formula due to Erdős. See A068507 for the terms such that a(n)+-1 are twin primes. - M. F. Hasler, Jun 23 2019
Conjecture: For n > 7, a(n) is a Zumkeller number (A083207). Verified for n up to and including 48. If this conjecture is true, one may base on it an alternative proof of the fact that for n>7 a(n) is not a perfect square (see Fact 5, Rao/Peng arXiv link at A083207). - Ivan N. Ianakiev, Jun 29 2019
The conjecture above is true (see the proof in the "Links" section). - Ivan N. Ianakiev, Jan 31 2020
The first instance of omega(a(n)) < omega(a(n-1)) (omega = A001221: number of prime divisors) is at a(26) = 45360. Up to n = 10^4, 1759 terms have this property, but omega decreases by 2 only at indices n = 5857, 5914 and 5971. - M. F. Hasler, Jan 02 2020
Inequality (54) in Ramanujan (1915) implies that for any m there is n* such that m | a(n) for all n > n*: see A199337 for the proof. - M. F. Hasler, Jan 03 2020

Examples

			a(5) = 12 is in the sequence because A000005(12) is larger than any earlier value in A000005. - _M. F. Hasler_, Jan 03 2020
		

References

  • CRC Press Standard Mathematical Tables, 28th Ed, p. 61.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 180, p. 56, Ellipses, Paris 2008.
  • L. E. Dickson, History of Theory of Numbers, I, p. 323.
  • Ross Honsberger, An introduction to Ramanujan's Highly Composite Numbers, Chap. 14 pp. 193-200 Mathematical Gems III, DME no. 9 MAA 1985
  • Jean-Louis Nicolas, On highly composite numbers, pp. 215-244 in Ramanujan Revisited, Editors G. E. Andrews et al., Academic Press 1988
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 88.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 128.

Crossrefs

Cf. A261100 (a left inverse).
Cf. A002808. - Peter J. Marko, Aug 16 2018
Cf. A279930 (highly composite and highly Brazilian).
Cf. A068507 (terms such that a(n)+-1 are twin primes).
Cf. A199337 (number of terms not divisible by n).

Programs

  • Mathematica
    a = 0; Do[b = DivisorSigma[0, n]; If[b > a, a = b; Print[n]], {n, 1, 10^7}]
    (* Convert A. Flammenkamp's 779674-term dataset; first, decompress, rename "HCN.txt": *)
    a = Times @@ {Times @@ Prime@ Range@ ToExpression@ First@ #1, If[# == {}, 1, Times @@ MapIndexed[Prime[First@ #2]^#1 &, #]] &@ DeleteCases[-1 + Flatten@ Map[If[StringFreeQ[#, "^"], ToExpression@ #, ConstantArray[#1, #2] & @@ ToExpression@ StringSplit[#, "^"]] &, #2], 0]} & @@ TakeDrop[StringSplit@ #, 1] & /@ Import["HCN.txt", "Data"] (* Michael De Vlieger, May 08 2018 *)
    DeleteDuplicates[Table[{n,DivisorSigma[0,n]},{n,2163000}],GreaterEqual[ #1[[2]],#2[[2]]]&] [[All,1]] (* Harvey P. Dale, May 13 2022 *)
    NestList[Function[last,
      Module[{d = DivisorSigma[0, last]},
       NestWhile[# + 1 &, last, DivisorSigma[0, #] <= d &]]], 1, 40] (* Steven Lu, Mar 30 2023 *)
  • PARI
    print1(r=1); forstep(n=2,1e5,2, if(numdiv(n)>r, r=numdiv(n); print1(", "n))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    v002182 = [1]/*vector for memoization*/; A002182(n, i = #v002182) ={ if(n > i, v002182 = Vec(v002182, n); my(k = v002182[i], d, s=1); until(i == n, d = numdiv(k); s<60 && k>=60 && s=60; until(numdiv(k += s) > d,); v002182[i++] = k); k, v002182[n])} \\ Antti Karttunen, Jun 06 2017; edited by M. F. Hasler, Jan 03 2020 and Jun 20 2022
    
  • PARI
    is_A002182(n, a=1, b=1)={while(n>A002182(b*=2), a*=2); until(a>b, my(m=(a+b)\2, t=A002182(m)); if(tn, b=m-1, return(m)))} \\ Also used in other sequences. - M. F. Hasler, Jun 20 2022
    
  • Python
    from sympy import divisor_count
    A002182_list, r = [], 0
    for i in range(1,10**4):
        d = divisor_count(i)
        if d > r:
            r = d
            A002182_list.append(i) # Chai Wah Wu, Mar 23 2015

Formula

Also, for n >= 2, smallest values of p for which A006218(p)-A006318(p-1) = A002183(n). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(n+1) < a(n) * (1+log(a(n))^-c) for some positive c (see Erdős). - David A. Corneth, May 16 2016
a(n) = A108951(A329902(n)). - Antti Karttunen, Jan 08 2020
a(n+1) <= 2*a(n). For cases where the equal sign holds, see A072938. - A.H.M. Smeets, Jul 10 2021
Sum_{n>=1} 1/a(n) = A352418. - Amiram Eldar, Mar 24 2022

Extensions

Jun 19 1996: Changed beginning to start at 1.
Jul 10 1996: Matthew Conroy points out that these are different from the super-abundant numbers - see A004394. Last 8 terms sent by J. Lowell; checked by Jud McCranie.
Description corrected by Gerard Schildberger and N. J. A. Sloane, Apr 04 2001
Additional references from Lekraj Beedassy, Jul 24 2001

A002183 Number of divisors of n-th highly composite number.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 32, 36, 40, 48, 60, 64, 72, 80, 84, 90, 96, 100, 108, 120, 128, 144, 160, 168, 180, 192, 200, 216, 224, 240, 256, 288, 320, 336, 360, 384, 400, 432, 448, 480, 504, 512, 576, 600, 640, 672, 720, 768, 800, 864, 896
Offset: 1

Views

Author

Keywords

Comments

Record values of tau(n).
RECORDS transform of A000005.
All powers of 2 are present through 2^17. No power of 2 above that is present at least through 2^51. - Comment from Robert G. Wilson v, modified by Ray Chandler, Nov 10 2005
No power of 2 above 2^17 is contained in this sequence - see McRae link for proof. - Graeme McRae, Apr 27 2006
All numbers of the form 9*2^n are present for n=0 through n=30. - Richard Peterson, Sep 07 2024

References

  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. 87.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (nub)
    a002183 n = a002183_list !! (n-1)
    a002183_list = nub $ map (a000005 . a061799) [1..]
    -- Reinhard Zumkeller, Apr 01 2011
  • Mathematica
    Reap[ For[ record = 0; n = 1, n <= 10^9, n = If[n < 60, n+1, n+60], tau = DivisorSigma[0, n]; If[tau > record, record = tau; Print[tau]; Sow[tau]]]][[2, 1]] (* Jean-François Alcover, Aug 13 2013 *)
    DeleteDuplicates[DivisorSigma[0,Range[3*10^6]],GreaterEqual] (* The program generates the first 42 terms of the sequence. *) (* Harvey P. Dale, Aug 12 2025 *)

Formula

a(n) = A000005(A002182(n)).
Also record values of differences A006218(p)-A006218(p-1). These record values occur for any p = A002182(q) where q>=2. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(A261100(n)) = A070319(n). - Antti Karttunen, Jun 06 2017
a(n) = A329605(A329902(n)). - Antti Karttunen, Jan 14 2020

Extensions

More terms from Robert G. Wilson v, Jul 24 2002

A319626 Primorial deflation of n (numerator): Let f be the completely multiplicative function over the positive rational numbers defined by f(p) = A034386(p) for any prime number p; f constitutes a permutation of the positive rational numbers; let g be the inverse of f; for any n > 0, a(n) is the numerator of g(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 10, 11, 6, 13, 14, 5, 16, 17, 9, 19, 20, 21, 22, 23, 12, 25, 26, 27, 28, 29, 5, 31, 32, 33, 34, 7, 9, 37, 38, 39, 40, 41, 21, 43, 44, 15, 46, 47, 24, 49, 50, 51, 52, 53, 27, 55, 56, 57, 58, 59, 10, 61, 62, 63, 64, 65, 33, 67, 68, 69
Offset: 1

Views

Author

Rémy Sigrist, Sep 25 2018

Keywords

Comments

See A319627 for the corresponding denominators.
The restriction of f to the natural numbers corresponds to A108951.
The function g is completely multiplicative over the positive rational numbers with g(2) = 2 and g(q) = q/p for any pair (p, q) of consecutive prime numbers.
The ratio A319626(n)/A319627(n) can be viewed as a "primorial deflation" of n (see also A329900), with the inverse operation being n = A108951(A319626(n)) / A108951(A319627(n)), where A319627(k) = 1 for all k in A025487. - Daniel Suteu, Dec 29 2019

Examples

			f(21/5) = (2*3) * (2*3*5*7) / (2*3*5) = 42, hence g(42) = 21/5 and a(42) = 21.
		

Crossrefs

A left inverse of A108951. Coincides with A329900 on A025487.
Cf. A006530, A053585, A064989, A181815, A307035, A319627, A319630, A329902, A330749, A330750 (rgs-transform), A330751 (ordinal transform).

Programs

  • Mathematica
    Array[#1/GCD[#1, #2] & @@ {#, Apply[Times, Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#]]]} &, 120] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    a(n) = my (f=factor(n)); numerator(prod(i=1, #f~, my (p=f[i,1]); (p/if (p>2, precprime(p-1), 1))^f[i,2]))

Formula

a(n) = n / gcd(n, A064989(n)) = n / A330749(n).
a(n) <= n with equality iff n belongs to A319630.
A006530(a(n)) = A006530(n).
A053585(a(n)) = A053585(n).
From Antti Karttunen, Dec 29 2019: (Start)
a(A108951(n)) = n.
a(A025487(n)) = A329900(A025487(n)) = A181815(n).
Many of the formulas given in A329900 apply here as well:
a(n!) = A307035(n), a(A002182(n)) = A329902(n), and so on.
(End)

Extensions

"Primorial deflation" prefixed to the name by Antti Karttunen, Dec 29 2019

A181815 a(n) = largest integer such that, when any of its divisors divides A025487(n), the quotient is a member of A025487.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 12, 5, 32, 9, 24, 10, 64, 18, 48, 20, 128, 36, 15, 96, 7, 27, 40, 256, 72, 30, 192, 14, 54, 80, 512, 144, 60, 384, 28, 108, 25, 160, 1024, 45, 288, 21, 81, 120, 768, 56, 216, 50, 320, 2048, 90, 576, 11, 42, 162, 240, 1536, 112, 432, 100, 640, 4096, 180, 1152
Offset: 1

Views

Author

Matthew Vandermast, Nov 30 2010

Keywords

Comments

A permutation of the natural numbers.
The number of divisors of a(n) equals the number of ordered factorizations of A025487(n) as A025487(j)*A025487(k). Cf. A182762.
From Antti Karttunen, Dec 28 2019: (Start)
Rearranges terms of A108951 into ascending order, as A108951(a(n)) = A025487(n).
The scatter plot looks like a curtain of fractal spray, which is typical for many of the so-called "entanglement permutations". Indeed, according to the terminology I use in my 2016-2017 paper, this sequence is obtained by entangling the complementary pair (A329898, A330683) with the complementary pair (A005843, A003961), which gives the following implicit recurrence: a(A329898(n)) = 2*a(n) and a(A330683(n)) = A003961(a(n)). An explicit form is given in the formula section.
(End)

Examples

			For any divisor d of 9 (d = 1, 3, 9), 36/d (36, 12, 4) is a member of A025487. 9 is the largest number with this relationship to 36; therefore, since 36 = A025487(11), a(11) = 9.
		

Crossrefs

If this sequence is considered the "primorial deflation" of A025487(n) (see first formula), the primorial inflation of n is A108951(n), and the primorial inflation of A025487(n) is A181817(n).
A181820(n) is another mapping from the members of A025487 to the positive integers.

Programs

  • Mathematica
    (* First, load the program at A025487, then: *)
    Map[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[g, ReplacePart[Table[0, {PrimePi[g[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, g]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, Union@ Flatten@ f@ 6] (* Michael De Vlieger, Dec 28 2019 *)
  • PARI
    A181815(n) = A329900(A025487(n)); \\ Antti Karttunen, Dec 24 2019

Formula

If A025487(n) is considered in its form as Product A002110(i)^e(i), then a(n) = Product p(i)^e(i). If A025487(n) is instead considered as Product p(i)^e(i), then a(n) = Product (p(i)/A008578(i))^e(i).
a(n) = A122111(A181820(n)). - Matthew Vandermast, May 21 2012
From Antti Karttunen, Dec 24-29 2019: (Start)
a(n) = Product_{i=1..A051282(n)} A000040(A304886(i)).
a(n) = A329900(A025487(n)) = A319626(A025487(n)).
a(n) = A163511(A329905(n)).
For n > 1, if A330682(n) = 1, then a(n) = A003961(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
A252464(a(n)) = A329907(n).
A330690(a(n)) = A050378(n).
a(A306802(n)) = A329902(n).
(End)

A329900 Primorial deflation of n: starting from x = n, repeatedly divide x by the largest primorial A002110(k) that divides it, until x is an odd number. Then a(n) = Product prime(k_i), for primorial indices k_1 >= k_2 >= ..., encountered in the process.

Original entry on oeis.org

1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 6, 1, 2, 1, 16, 1, 3, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 5, 1, 32, 1, 2, 1, 9, 1, 2, 1, 8, 1, 3, 1, 4, 1, 2, 1, 24, 1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 10, 1, 2, 1, 64, 1, 3, 1, 4, 1, 2, 1, 18, 1, 2, 1, 4, 1, 3, 1, 16, 1, 2, 1, 6, 1, 2, 1, 8, 1, 5, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 3, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Comments

When applied to arbitrary n, the "primorial deflation" (term coined by Matthew Vandermast in A181815) induces the splitting of n to two factors A328478(n)*A328479(n) = n, where we call A328478(n) the non-deflatable component of n (which is essentially discarded), while A328479(n) is the deflatable component. Only if n is in A025487, then the entire n is deflatable, i.e., A328478(n) = 1 and A328479(n) = n.
According to Daniel Suteu, also the ratio (A319626(n) / A319627(n)) can be viewed as a "primorial deflation". That definition coincides with this one when restricted to terms of A025487, as for all k in A025487, A319626(k) = a(k), and A319627(k) = 1. - Antti Karttunen, Dec 29 2019

Crossrefs

Programs

  • Mathematica
    Array[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, 105] (* Michael De Vlieger, Dec 28 2019 *)
    Array[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, 105] (* Michael De Vlieger, Jan 11 2020 *)
  • PARI
    A329900(n) = { my(m=1, pp=1); while(1, forprime(p=2, ,if(n%p, if(2==p, return(m), break), n /= p; pp = p)); m *= pp); (m); };
    
  • PARI
    A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
    A276084(n) = { for(i=1,oo,if(n%prime(i),return(i-1))); }
    A329900(n) = if(n%2,1,prime(A276084(n))*A329900(A111701(n)));

Formula

For odd n, a(n) = 1, for even n, a(n) = A000040(A276084(n)) * a(A111701(n)).
For even n, a(n) = A000040(A276084(n)) * a(n/A002110(A276084(n))).
A108951(a(n)) = A328479(n), for n >= 1.
a(A108951(n)) = n, for n >= 1.
a(A328479(n)) = a(n), for n >= 1.
a(A328478(n)) = 1, for n >= 1.
a(A002110(n)) = A000040(n), for n >= 1.
a(A000142(n)) = A307035(n), for n >= 0.
a(A283477(n)) = A019565(n), for n >= 0.
a(A329886(n)) = A005940(1+n), for n >= 0.
a(A329887(n)) = A163511(n), for n >= 0.
a(A329602(n)) = A329888(n), for n >= 1.
a(A025487(n)) = A181815(n), for n >= 1.
a(A124859(n)) = A181819(n), for n >= 1.
a(A181817(n)) = A025487(n), for n >= 1.
a(A181821(n)) = A122111(n), for n >= 1.
a(A002182(n)) = A329902(n), for n >= 1.
a(A260633(n)) = A329889(n), for n >= 1.
a(A033833(n)) = A330685(n), for n >= 1.
a(A307866(1+n)) = A330686(n), for n >= 1.
a(A330687(n)) = A330689(n), for n >= 1.

A329605 Number of divisors of A108951(n), where A108951 is fully multiplicative with a(prime(i)) = prime(i)# = Product_{i=1..i} A000040(i).

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 16, 4, 9, 12, 32, 8, 64, 24, 18, 5, 128, 12, 256, 16, 36, 48, 512, 10, 27, 96, 16, 32, 1024, 24, 2048, 6, 72, 192, 54, 15, 4096, 384, 144, 20, 8192, 48, 16384, 64, 32, 768, 32768, 12, 81, 36, 288, 128, 65536, 20, 108, 40, 576, 1536, 131072, 30, 262144, 3072, 64, 7, 216, 96, 524288, 256, 1152, 72, 1048576, 18, 2097152, 6144, 48
Offset: 1

Views

Author

Antti Karttunen, Nov 18 2019

Keywords

Crossrefs

Cf. A329606 (rgs-transform), A329608, A331284 (ordinal transform).
Cf. A331285 (the position where for the first time some term has occurred n times in this sequence).

Programs

  • Mathematica
    Block[{a}, a[n_] := a[n] = Module[{f = FactorInteger[n], p, e}, If[Length[f] > 1, Times @@ a /@ Power @@@ f, {{p, e}} = f; Times @@ (Prime[Range[PrimePi[p]]]^e)]]; a[1] = 1; Array[DivisorSigma[0, a@ #] &, 75]] (* Michael De Vlieger, Jan 24 2020, after Jean-François Alcover at A108951 *)
  • PARI
    A034386(n) = prod(i=1, primepi(n), prime(i));
    A108951(n) = { my(f=factor(n)); prod(i=1, #f~, A034386(f[i, 1])^f[i, 2]) };  \\ From A108951
    A329605(n) = numdiv(A108951(n));
    
  • PARI
    A329605(n) = if(1==n,1,my(f=factor(n),e=1,m=1); forstep(i=#f~,1,-1, e += f[i,2]; m *= e^(primepi(f[i,1])-if(1==i,0,primepi(f[i-1,1])))); (m)); \\ Antti Karttunen, Jan 14 2020
    
  • PARI
    A329605(n) = if(1==n,1,my(f=factor(n),e=0,d); forstep(i=#f~,1,-1, e += f[i,2]; d = (primepi(f[i,1])-if(1==i,0,primepi(f[i-1,1]))); f[i,1] = (e+1); f[i,2] = d); factorback(f)); \\ Antti Karttunen, Jan 14 2020

Formula

a(n) = A000005(A108951(n)).
a(n) >= A329382(n) >= A329617(n) >= A329378(n).
A020639(a(n)) = A329614(n).
From Antti Karttunen, Jan 14 2020: (Start)
a(A052126(n)) = A329382(n).
a(A002110(n)) = A000142(1+n), for all n >= 0.
a(n) > A056239(n).
a(A329902(n)) = A002183(n).
A000265(a(n)) = A331286(n).
gcd(n,a(n)) = A331283(n).
If n = p(k1)^e(k1) * p(k2)^e(k2) * p(k3)^e(k3) * ... * p(kx)^e(kx), with p(n) = A000040(n) and k1 > k2 > ... > kx, then a(n) = (1+e(k1))^(k1-k2) * (1+e(k1)+e(k2))^(k2-k3) * ... * (1+e(k1)+e(k2)+...+e(kx))^kx.
A000035(a(n)) = A000035(A000005(n)) = A010052(n).
(End)

A342012 Primorial deflation of the n-th colossally abundant number: the unique integer k such that A108951(k) = A004490(n).

Original entry on oeis.org

2, 3, 6, 10, 20, 30, 42, 84, 132, 156, 312, 468, 780, 1020, 1140, 1380, 2760, 3480, 3720, 5208, 7812, 9324, 10332, 10836, 21672, 23688, 26712, 29736, 49560, 51240, 56280, 59640, 61320, 96360, 104280, 208560, 219120, 328680, 352440, 384120, 453960, 472680, 482040, 500760, 510120, 528840, 594360, 613080, 641160, 650520, 1301040
Offset: 1

Views

Author

Antti Karttunen, Mar 08 2021

Keywords

Comments

In contrast to A329902, this sequence is monotonic, because each term is obtained from the previous, either by multiplying it by 2, or by "bumping" one [or hypothetically: two] of its prime factors one step up (i.e., replacing it with the next larger prime), and both operations are guaranteed to make the number larger.

Crossrefs

Programs

  • PARI
    v073751 = readvec("b073751_to.txt");
    A073751(n) = v073751[n];
    A004490list(v073751) = { my(v=vector(#v073751)); v[1] = 2; for(n=2,#v,v[n] = v073751[n]*v[n-1]); (v); };
    v004490 = A004490list(v073751);
    A004490(n) = v004490[n];
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A319626(n) = (n / gcd(n, A064989(n)));
    A342012(n) = A319626(A004490(n));

Formula

a(n) = A319626(A004490(n)) = A329900(A004490(n)).
a(n) = A005940(1+A342013(n)).

A328521 Smallest highly composite number that has n prime factors counted with multiplicity.

Original entry on oeis.org

1, 2, 4, 12, 24, 48, 240, 720, 5040, 10080, 20160, 221760, 665280, 8648640, 17297280, 294053760, 2205403200, 27935107200, 293318625600, 1927522396800, 8995104518400, 26985313555200, 782574093100800, 24259796886124800, 48519593772249600, 1795224969573235200, 8976124847866176000, 368021118762513216000
Offset: 0

Views

Author

David A. Corneth, Jan 04 2020

Keywords

Comments

a(n-1) differs from A133411(n) for n in A354880.
Question: Is this sequence strictly growing? If sequence A330748 is monotonic, so is this also, and vice versa. Note that the primorial deflation sequence, A330743, is not monotonic. - Antti Karttunen, Jan 14 2020

Crossrefs

Cf. A001222 (bigomega), A002182 (highly composite numbers), A108951, A112778 (bigomega of HCN's), A330743 (primorial deflation), A330748 (indices in A002182).
Cf. also A133411.
Cf. A354880.

Programs

  • Mathematica
    (* First load the function f at A025487, then: *)
    Block[{s = Union@ Flatten@ f@ 17, t}, t = DivisorSigma[0, s]; s = Map[s[[FirstPosition[t, #][[1]] ]] &, Union@ FoldList[Max, t]]; t = PrimeOmega[s]; Array[s[[FirstPosition[t, #][[1]] ]] &, Max@ t + 1, 0]] (* Michael De Vlieger, Jan 12 2020 *)
  • PARI
    a(n)=for(k=1,oo,bigomega(A2182[k])==n&&return(A2182[k])) \\ Global variable A2182 must hold a vector of values of A002182. - M. F. Hasler, Jan 08 2020

Formula

a(n) = A002182(A330748(n)) = A002182(min{k: A112778(k)=n}). - M. F. Hasler, Jan 08 2020
a(n) = A108951(A330743(n)), where A330743(n) is the first term k of A329902 for which A056239(k) = n. - Antti Karttunen, Jan 13 2020
Showing 1-10 of 15 results. Next