cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A329902 Primorial deflation of the n-th highly composite number: the unique integer k such that A108951(k) = A002182(n).

Original entry on oeis.org

1, 2, 4, 3, 6, 12, 9, 24, 10, 20, 15, 40, 30, 60, 28, 21, 56, 42, 84, 63, 168, 126, 336, 140, 66, 189, 280, 132, 99, 264, 198, 528, 220, 396, 297, 440, 792, 156, 117, 312, 234, 624, 260, 468, 351, 520, 936, 390, 1040, 1872, 780, 585, 306, 1560, 340, 612, 459, 680, 1224, 510, 1360, 2448, 1020, 765, 342, 2040, 1530, 684, 513
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Map[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, Take[Import["https://oeis.org/b002182.txt", "Data"][[All, -1]], 69] ] (* Michael De Vlieger, Jan 13 2020, imports b-file at A002182 *)

Formula

a(n) = A329900(A002182(n)) = A319626(A002182(n)).
a(n) = A181815(A306802(n)).
A108951(a(n)) = A002182(n). [Highly composite numbers (undeflated)]
A056239(a(n)) = A112778(n). [Number of prime factors, counted with multiplicity]
A001222(a(n)) = A112779(n). [Largest exponent in the prime factorization]
A329605(a(n)) = A002183(n). [Number of divisors]
A329040(a(n)) = A324381(n).
A324888(a(n)) = A324382(n).
a(A330748(n)) = A330743(n).

Extensions

More linking formulas added by Antti Karttunen, Jan 13 2020

A328521 Smallest highly composite number that has n prime factors counted with multiplicity.

Original entry on oeis.org

1, 2, 4, 12, 24, 48, 240, 720, 5040, 10080, 20160, 221760, 665280, 8648640, 17297280, 294053760, 2205403200, 27935107200, 293318625600, 1927522396800, 8995104518400, 26985313555200, 782574093100800, 24259796886124800, 48519593772249600, 1795224969573235200, 8976124847866176000, 368021118762513216000
Offset: 0

Views

Author

David A. Corneth, Jan 04 2020

Keywords

Comments

a(n-1) differs from A133411(n) for n in A354880.
Question: Is this sequence strictly growing? If sequence A330748 is monotonic, so is this also, and vice versa. Note that the primorial deflation sequence, A330743, is not monotonic. - Antti Karttunen, Jan 14 2020

Crossrefs

Cf. A001222 (bigomega), A002182 (highly composite numbers), A108951, A112778 (bigomega of HCN's), A330743 (primorial deflation), A330748 (indices in A002182).
Cf. also A133411.
Cf. A354880.

Programs

  • Mathematica
    (* First load the function f at A025487, then: *)
    Block[{s = Union@ Flatten@ f@ 17, t}, t = DivisorSigma[0, s]; s = Map[s[[FirstPosition[t, #][[1]] ]] &, Union@ FoldList[Max, t]]; t = PrimeOmega[s]; Array[s[[FirstPosition[t, #][[1]] ]] &, Max@ t + 1, 0]] (* Michael De Vlieger, Jan 12 2020 *)
  • PARI
    a(n)=for(k=1,oo,bigomega(A2182[k])==n&&return(A2182[k])) \\ Global variable A2182 must hold a vector of values of A002182. - M. F. Hasler, Jan 08 2020

Formula

a(n) = A002182(A330748(n)) = A002182(min{k: A112778(k)=n}). - M. F. Hasler, Jan 08 2020
a(n) = A108951(A330743(n)), where A330743(n) is the first term k of A329902 for which A056239(k) = n. - Antti Karttunen, Jan 13 2020

A330748 Index of the smallest element in A002182 that has exactly n prime factors counted with multiplicity.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 12, 14, 19, 21, 23, 32, 37, 47, 50, 62, 70, 80, 91, 99, 105, 109, 124, 140, 143, 159, 166, 182, 198, 217, 221, 240, 253, 276, 297, 304, 327, 352, 357, 381, 398, 424, 449, 475, 485, 512, 540, 570, 584, 617, 642, 676, 704, 738, 765, 770, 805, 841, 877, 913, 937, 949, 985, 1021, 1058, 1096, 1134, 1169
Offset: 0

Views

Author

Antti Karttunen, suggested by M. F. Hasler, Jan 10 2020

Keywords

Crossrefs

Programs

  • PARI
    A330748(n) = { for(k=1,#v112778,if(v112778[k]==n,return(k))); -(1/0); };
    
  • PARI
    v329902 = readvec("a329902.txt"); \\ File for the first 779674 terms of A329902
    A056239(n) = if(1==n,0,my(f=factor(n)); sum(i=1, #f~, f[i,2] * primepi(f[i,1])));
    A330748list() = { my(m=Map(), lista=List([]), t); for(i=1, #v329902, t = A056239(v329902[i]); if(!mapisdefined(m,t), mapput(m,t,i))); for(n=0,oo,if(mapisdefined(m,n,&t), listput(lista,t), return(Vec(lista)))); };
    v330748 = A330748list();
    A330748(n) = v330748[1+n];
    for(n=0,#v330748-1,write("b330748.txt", n, " ", A330748(n))); \\ Antti Karttunen, Jan 13 2020

Formula

a(n) = min{k: A112778(k)=n}.
A002182(a(n)) = A328521(n).
A329902(a(n)) = A330743(n).
Showing 1-3 of 3 results.