cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A354880 Numbers k where A133411(k) is not equal to A328521(k-1).

Original entry on oeis.org

17, 19, 21, 51, 52, 55, 56, 57, 58, 59, 60, 61, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 127, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169
Offset: 1

Views

Author

J. Lowell, Jun 09 2022

Keywords

Examples

			A133411(17)=5587021440. (5587021440/19 = A133411(16) = 294053760.) But A328521(16)=2205403200. (2205403200 has 16 prime factors and is A328521(16) even if not 294053760 times an integer [the quotient is 15/2].) Thus, 17 is a term of this sequence.
		

Crossrefs

A133411 Smallest highly composite number of the form k*a(n-1) where k is an integer greater than 1.

Original entry on oeis.org

1, 2, 4, 12, 24, 48, 240, 720, 5040, 10080, 20160, 221760, 665280, 8648640, 17297280, 294053760, 5587021440, 27935107200, 642507465600, 1927522396800, 13492656777600, 26985313555200, 782574093100800, 24259796886124800
Offset: 1

Views

Author

J. Lowell, Nov 25 2007

Keywords

Comments

Conjecture: subsequence of A019505.

Examples

			6 is not in the sequence because 6 is not a multiple of 4, the previous term.
		

Crossrefs

Cf. A002182, A019505, A328521, A330744 (primorial deflation).

Programs

  • PARI
    sublist_of_first_proper_multiple_terms_of(v) = { my(u=v[1], lista=List(u)); for(i=2,#v,if((v[i]>u)&&!(v[i]%u), u = v[i]; listput(lista,u))); Vec(lista); };
    v133411 = sublist_of_first_proper_multiple_terms_of(v002182); \\ v002182 contains the terms of A002182.
    A133411(n) = v133411[n]; \\ Antti Karttunen, Jan 10 2020

Extensions

a(12)-a(24) from Donovan Johnson, Sep 09 2008

A330743 a(n) is the first term k of A329902 for which A056239(k) = n.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 40, 60, 84, 168, 336, 528, 792, 936, 1872, 2448, 3060, 4560, 4788, 8280, 15456, 23184, 29232, 31248, 62496, 74592, 124320, 137760, 144480, 157920, 315840, 356160, 559680, 623040, 644160, 966240, 1061280, 1124640, 1686960, 1734480, 2049840, 2218320, 2330640, 2499120, 4165200, 4539600, 4726800, 4820400
Offset: 0

Views

Author

Antti Karttunen, Jan 13 2020

Keywords

Comments

Note that in contrast to A330744 this is not monotonic. The first point where a(n) > a(n+1) occurs is at a(120) = 5481774144 > a(121) = 5452302240. See also comment in A328521, whose primorial deflation this sequence is.
a(n-1) differs from A330744(n) at n = 17, 19, 21, 51, 52, 55, 56, 57, 58, 59, 60, 61, ...

Crossrefs

Primorial deflation of A328521.
Cf. also A330744.

Programs

  • PARI
    A330743(n) = { for(k=1,oo,if(A056239(A329902(k))==n,return(A329902(k)))); };
    
  • PARI
    v329902 = readvec("a329902.txt"); \\ File for the first 779674 terms of A329902 as prepared by Michael De Vlieger.
    A056239(n) = if(1==n,0,my(f=factor(n)); sum(i=1, #f~, f[i,2] * primepi(f[i,1])));
    A330743list() = { my(m=Map(), lista=List([]), t); for(i=1, #v329902, t = A056239(v329902[i]); if(!mapisdefined(m,t), mapput(m,t,v329902[i]))); for(n=0,oo,if(mapisdefined(m,n,&t), listput(lista,t), return(Vec(lista)))); };
    v330743 = A330743list();
    A330743(n) = v330743[1+n];
    for(n=0,#v330743-1,write("b330743.txt", n, " ", A330743(n)));

Formula

a(n) = A329902(min{i: A056239(A329902(i))==n}).
a(n) = A329902(A330748(n)).
a(n) = A329900(A328521(n)) = A319626(A328521(n)).

A330748 Index of the smallest element in A002182 that has exactly n prime factors counted with multiplicity.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 12, 14, 19, 21, 23, 32, 37, 47, 50, 62, 70, 80, 91, 99, 105, 109, 124, 140, 143, 159, 166, 182, 198, 217, 221, 240, 253, 276, 297, 304, 327, 352, 357, 381, 398, 424, 449, 475, 485, 512, 540, 570, 584, 617, 642, 676, 704, 738, 765, 770, 805, 841, 877, 913, 937, 949, 985, 1021, 1058, 1096, 1134, 1169
Offset: 0

Views

Author

Antti Karttunen, suggested by M. F. Hasler, Jan 10 2020

Keywords

Crossrefs

Programs

  • PARI
    A330748(n) = { for(k=1,#v112778,if(v112778[k]==n,return(k))); -(1/0); };
    
  • PARI
    v329902 = readvec("a329902.txt"); \\ File for the first 779674 terms of A329902
    A056239(n) = if(1==n,0,my(f=factor(n)); sum(i=1, #f~, f[i,2] * primepi(f[i,1])));
    A330748list() = { my(m=Map(), lista=List([]), t); for(i=1, #v329902, t = A056239(v329902[i]); if(!mapisdefined(m,t), mapput(m,t,i))); for(n=0,oo,if(mapisdefined(m,n,&t), listput(lista,t), return(Vec(lista)))); };
    v330748 = A330748list();
    A330748(n) = v330748[1+n];
    for(n=0,#v330748-1,write("b330748.txt", n, " ", A330748(n))); \\ Antti Karttunen, Jan 13 2020

Formula

a(n) = min{k: A112778(k)=n}.
A002182(a(n)) = A328521(n).
A329902(a(n)) = A330743(n).

A328522 Largest highly composite number that has n prime factors counted with multiplicity.

Original entry on oeis.org

1, 2, 6, 12, 60, 180, 1260, 2520, 27720, 83160, 1081080, 3603600, 61261200, 698377680, 3491888400, 80313433200, 240940299600, 1686582097200, 48910880818800, 1516237305382800, 3032474610765600, 112201560598327200, 3066842656354276800, 131874234223233902400, 659371171116169512000, 30990445042459967064000
Offset: 0

Views

Author

David A. Corneth, Jan 04 2020

Keywords

Comments

These numbers are upper bounds on the largest term in A002182 that is not divisible by k for some k.

Crossrefs

Programs

  • Mathematica
    With[{s = Take[Import["https://oeis.org/b002182.txt", "Data"][[All, -1]], 240]}, Drop[TakeWhile[#, IntegerQ], -6] &@ Table[s[[Lookup[#, n][[-1]] ]], {n, 0, Max@ Keys@ #}] &@ PositionIndex[Map[PrimeOmega, s]]] (* Michael De Vlieger, Jan 19 2020, using b-file at A002182. Caution: ensure full population of a given value of bigomega by extending scope beyond the desired number of terms. *)
Showing 1-5 of 5 results.