cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A329900 Primorial deflation of n: starting from x = n, repeatedly divide x by the largest primorial A002110(k) that divides it, until x is an odd number. Then a(n) = Product prime(k_i), for primorial indices k_1 >= k_2 >= ..., encountered in the process.

Original entry on oeis.org

1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 6, 1, 2, 1, 16, 1, 3, 1, 4, 1, 2, 1, 12, 1, 2, 1, 4, 1, 5, 1, 32, 1, 2, 1, 9, 1, 2, 1, 8, 1, 3, 1, 4, 1, 2, 1, 24, 1, 2, 1, 4, 1, 3, 1, 8, 1, 2, 1, 10, 1, 2, 1, 64, 1, 3, 1, 4, 1, 2, 1, 18, 1, 2, 1, 4, 1, 3, 1, 16, 1, 2, 1, 6, 1, 2, 1, 8, 1, 5, 1, 4, 1, 2, 1, 48, 1, 2, 1, 4, 1, 3, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 22 2019

Keywords

Comments

When applied to arbitrary n, the "primorial deflation" (term coined by Matthew Vandermast in A181815) induces the splitting of n to two factors A328478(n)*A328479(n) = n, where we call A328478(n) the non-deflatable component of n (which is essentially discarded), while A328479(n) is the deflatable component. Only if n is in A025487, then the entire n is deflatable, i.e., A328478(n) = 1 and A328479(n) = n.
According to Daniel Suteu, also the ratio (A319626(n) / A319627(n)) can be viewed as a "primorial deflation". That definition coincides with this one when restricted to terms of A025487, as for all k in A025487, A319626(k) = a(k), and A319627(k) = 1. - Antti Karttunen, Dec 29 2019

Crossrefs

Programs

  • Mathematica
    Array[If[OddQ@ #, 1, Times @@ Prime@ # &@ Rest@ NestWhile[Append[#1, {#3, Drop[#, -LengthWhile[Reverse@ #, # == 0 &]] &[#2 - PadRight[ConstantArray[1, #3], Length@ #2]]}] & @@ {#1, #2, LengthWhile[#2, # > 0 &]} & @@ {#, #[[-1, -1]]} &, {{0, TakeWhile[If[# == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ #], # > 0 &]}}, And[FreeQ[#[[-1, -1]], 0], Length[#[[-1, -1]] ] != 0] &][[All, 1]] ] &, 105] (* Michael De Vlieger, Dec 28 2019 *)
    Array[Times @@ Prime@(TakeWhile[Reap[FixedPointList[Block[{k = 1}, While[Mod[#, Prime@ k] == 0, k++]; Sow[k - 1]; #/Product[Prime@ i, {i, k - 1}]] &, #]][[-1, 1]], # > 0 &]) &, 105] (* Michael De Vlieger, Jan 11 2020 *)
  • PARI
    A329900(n) = { my(m=1, pp=1); while(1, forprime(p=2, ,if(n%p, if(2==p, return(m), break), n /= p; pp = p)); m *= pp); (m); };
    
  • PARI
    A111701(n) = forprime(p=2, , if(n%p, return(n), n /= p));
    A276084(n) = { for(i=1,oo,if(n%prime(i),return(i-1))); }
    A329900(n) = if(n%2,1,prime(A276084(n))*A329900(A111701(n)));

Formula

For odd n, a(n) = 1, for even n, a(n) = A000040(A276084(n)) * a(A111701(n)).
For even n, a(n) = A000040(A276084(n)) * a(n/A002110(A276084(n))).
A108951(a(n)) = A328479(n), for n >= 1.
a(A108951(n)) = n, for n >= 1.
a(A328479(n)) = a(n), for n >= 1.
a(A328478(n)) = 1, for n >= 1.
a(A002110(n)) = A000040(n), for n >= 1.
a(A000142(n)) = A307035(n), for n >= 0.
a(A283477(n)) = A019565(n), for n >= 0.
a(A329886(n)) = A005940(1+n), for n >= 0.
a(A329887(n)) = A163511(n), for n >= 0.
a(A329602(n)) = A329888(n), for n >= 1.
a(A025487(n)) = A181815(n), for n >= 1.
a(A124859(n)) = A181819(n), for n >= 1.
a(A181817(n)) = A025487(n), for n >= 1.
a(A181821(n)) = A122111(n), for n >= 1.
a(A002182(n)) = A329902(n), for n >= 1.
a(A260633(n)) = A329889(n), for n >= 1.
a(A033833(n)) = A330685(n), for n >= 1.
a(A307866(1+n)) = A330686(n), for n >= 1.
a(A330687(n)) = A330689(n), for n >= 1.

A307866 K-champion numbers: numbers m such that K(m) > K(j) for all j < m, where K(m) is the Kalmár function (A074206).

Original entry on oeis.org

0, 1, 4, 6, 8, 12, 24, 36, 48, 72, 96, 120, 144, 192, 240, 288, 360, 432, 480, 576, 720, 864, 960, 1152, 1440, 1728, 1920, 2160, 2304, 2880, 3456, 4320, 5760, 6912, 8640, 11520, 17280, 23040, 25920, 30240, 34560, 46080, 51840, 60480, 69120, 86400, 103680, 120960
Offset: 1

Views

Author

Amiram Eldar, May 02 2019

Keywords

Comments

The corresponding record values are 0, 1, 2, 3, 4, 8, 20, 26, 48, 76, 112, 132, 208, ... (see the link for more values).
Deléglise et al. (2008) proved that the number of powerful (A001694) terms in this sequence is finite. They ask whether a(391) = 485432135516160000 (the 112th powerful term) is the largest. - Amiram Eldar, Aug 20 2019
Is abs(omega(a(n)) - omega(a(n+1))) <= 1? (Cf. A001221.) - David A. Corneth, Apr 16 2020

Crossrefs

Cf. A001221, A001694, A002093, A033833, A074206, A163272, A330686 (after primorial deflation).

Programs

  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = Total[a /@ Most[Divisors[n]]]; s = {}; am=-1; Do[a1 = a[n]; If[a1>am, am=a1; AppendTo[s, n]], {n, 0, 10000}]; s

Formula

For n >= 1, a(1+n) = A108951(A330686(n)). - Antti Karttunen, Dec 31 2019

A353568 Prime shadows of (nonzero) K-champion numbers.

Original entry on oeis.org

1, 3, 4, 5, 6, 10, 9, 14, 15, 22, 20, 21, 26, 28, 33, 30, 35, 44, 39, 42, 55, 52, 51, 66, 65, 68, 70, 57, 78, 85, 110, 102, 95, 130, 114, 170, 138, 182, 220, 190, 174, 238, 260, 230, 255, 266, 340, 290, 276, 285, 322, 380, 310, 418, 345, 476, 406, 460, 370, 510, 506, 435, 532, 434, 580, 483, 570, 638, 465, 644, 518
Offset: 1

Views

Author

Antti Karttunen, Apr 29 2022

Keywords

Comments

Sequence is injective (no duplicate values occur) because A307866 (after its initial zero) is a subsequence of A025487.
The finite number of powerful (A001694) terms in A307866 implies a finite number of odd terms in this sequence.

Crossrefs

Programs

  • PARI
    v307866 = readvec("b307866_to.txt";) \\ Prepared from the b-file of A307866 with gawk ' { print $2 } ' < b307866.txt > b307866_to.txt
    A307866(n) = v307866[n];
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A353568(n) = A181819(A307866(1+n));

Formula

a(n) = A181819(A307866(1+n)).
a(n) = A122111(A330686(n)).

A329889 a(n) is the unique integer k such that A108951(k) = A260633(n).

Original entry on oeis.org

1, 3, 6, 12, 5, 10, 20, 15, 30, 60, 28, 45, 21, 56, 90, 42, 180, 84, 63, 168, 70, 126, 140, 252, 189, 280, 504, 210, 378, 264, 1008, 420, 315, 220, 840, 630, 1680, 792, 330, 1260, 1584, 945, 1400, 660, 2520, 495, 1890, 882, 1320, 2100, 990, 1764, 2640, 4200, 1980, 3528, 1485, 2200, 8400, 2646, 3960, 6300, 2970, 5292, 7920, 3300, 5940, 2772
Offset: 1

Views

Author

Antti Karttunen, Dec 28 2019

Keywords

Crossrefs

Formula

a(n) = A329900(A260633(n)).
Showing 1-4 of 4 results.