A083710
Number of integer partitions of n with a part dividing all the other parts.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 11, 12, 20, 25, 37, 43, 70, 78, 114, 143, 196, 232, 330, 386, 530, 641, 836, 1003, 1340, 1581, 2037, 2461, 3127, 3719, 4746, 5605, 7038, 8394, 10376, 12327, 15272, 17978, 22024, 26095, 31730, 37339, 45333, 53175, 64100, 75340, 90138
Offset: 0
From _Gus Wiseman_, Apr 18 2021: (Start)
The a(1) = 1 through a(7) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (41) (33) (61)
(111) (31) (221) (42) (331)
(211) (311) (51) (421)
(1111) (2111) (222) (511)
(11111) (321) (2221)
(411) (3211)
(2211) (4111)
(3111) (22111)
(21111) (31111)
(111111) (211111)
(1111111)
(End)
- L. M. Chawla, M. O. Levan and J. E. Maxfield, On a restricted partition function and its tables, J. Natur. Sci. and Math., 12 (1972), 95-101.
The version for "divisible by" instead of "dividing" is
A130689.
The case where there is also a part divisible by all the others is
A130714.
The complement of these partitions is counted by
A338470.
The Heinz numbers of these partitions are dense, complement of
A342193.
The case where there is also no part divisible by all the others is
A343345.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
-
with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l)-0 do c := c+numbpart(l[i]-1) od: RETURN(c): end: for j from 0 to 60 do printf(`%d, `, a(j)) od: # Zerinvary Lajos, Apr 14 2007
-
Table[Length[Select[IntegerPartitions[n],And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}] (* Gus Wiseman, Apr 18 2021 *)
A130689
Number of partitions of n such that every part divides the largest part; a(0) = 1.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 10, 11, 16, 19, 26, 28, 41, 43, 56, 65, 82, 88, 115, 122, 155, 174, 209, 225, 283, 305, 363, 402, 477, 514, 622, 666, 783, 858, 990, 1078, 1268, 1362, 1561, 1708, 1958, 2111, 2433, 2613, 2976, 3247, 3652, 3938, 4482, 4821, 5422
Offset: 0
For n = 6 we have 10 such partitions: [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 2, 2], [2, 2, 2], [1, 1, 1, 3], [3, 3], [1, 1, 4], [2, 4], [1, 5], [6].
From _Gus Wiseman_, Apr 18 2021: (Start)
The a(1) = 1 through a(8) = 16 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (41) (33) (61) (44)
(111) (31) (221) (42) (331) (62)
(211) (311) (51) (421) (71)
(1111) (2111) (222) (511) (422)
(11111) (411) (2221) (611)
(2211) (4111) (2222)
(3111) (22111) (3311)
(21111) (31111) (4211)
(111111) (211111) (5111)
(1111111) (22211)
(41111)
(221111)
(311111)
(2111111)
(11111111)
(End)
The Heinz numbers of these partitions are the complement of
A343337.
The complement is counted by
A343341.
The complement in the strict case is counted by
A343377.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A072233 counts partitions by sum and greatest part.
-
Table[If[n==0,1,Length[Select[IntegerPartitions[n],FreeQ[#,1]&&And@@IntegerQ/@(Max@@#/#)&]]],{n,0,30}] (* Gus Wiseman, Apr 18 2021 *)
-
seq(n)={Vec(1 + sum(m=1, n, my(u=divisors(m)); x^m/prod(i=1, #u, 1 - x^u[i] + O(x^(n-m+1)))))} \\ Andrew Howroyd, Apr 17 2021
A341450
Number of strict integer partitions of n that are empty or have smallest part not dividing all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 3, 9, 9, 12, 12, 20, 18, 28, 27, 37, 42, 55, 51, 74, 80, 98, 105, 136, 137, 180, 189, 232, 255, 308, 320, 403, 434, 512, 551, 668, 706, 852, 915, 1067, 1170, 1370, 1453, 1722, 1860, 2145, 2332, 2701, 2899, 3355, 3626, 4144
Offset: 0
The a(0) = 1 through a(15) = 12 strict partitions (empty columns indicated by dots, 0 represents the empty partition, A..D = 10..13):
0 . . . . 32 . 43 53 54 64 65 75 76 86 87
52 72 73 74 543 85 95 96
432 532 83 732 94 A4 B4
92 A3 B3 D2
542 B2 653 654
632 643 743 753
652 752 762
742 932 843
832 5432 852
942
A32
6432
The Heinz numbers of these partitions are
A339562 (non-strict:
A342193).
The case with greatest part not divisible by all others is
A343379.
The case with greatest part divisible by all others is
A343380.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
-
Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
A338470
Number of integer partitions of n with no part dividing all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 3, 2, 5, 5, 13, 7, 23, 21, 33, 35, 65, 55, 104, 97, 151, 166, 252, 235, 377, 399, 549, 591, 846, 858, 1237, 1311, 1749, 1934, 2556, 2705, 3659, 3991, 5090, 5608, 7244, 7841, 10086, 11075, 13794, 15420, 19195, 21003, 26240, 29089, 35483
Offset: 0
The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
(32) . (43) (53) (54) (64) (65) (75)
(52) (332) (72) (73) (74) (543)
(322) (432) (433) (83) (552)
(522) (532) (92) (732)
(3222) (3322) (443) (4332)
(533) (5322)
(542) (33222)
(632)
(722)
(3332)
(4322)
(5222)
(32222)
The Heinz numbers of these partitions are
A342193.
The case with maximum part not divisible by all the others is
A343342.
The case with maximum part divisible by all the others is
A343344.
A000070 counts partitions with a selected part.
A001787 count normal multisets with a selected position.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A276024 counts positive subset sums.
-
Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
(* Second program: *)
a[n_] := If[n == 0, 1, PartitionsP[n] - Sum[PartitionsP[d-1], {d, Divisors[n]}]];
a /@ Range[0, 50] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
-
a(n)={numbpart(n) - if(n, sumdiv(n, d, numbpart(d-1)))} \\ Andrew Howroyd, Mar 25 2021
A343341
Number of integer partitions of n with no part divisible by all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 4, 6, 11, 16, 28, 36, 58, 79, 111, 149, 209, 270, 368, 472, 618, 793, 1030, 1292, 1653, 2073, 2608, 3241, 4051, 4982, 6176, 7566, 9285, 11320, 13805, 16709, 20275, 24454, 29477, 35380, 42472, 50741, 60648, 72199, 85887, 101906, 120816
Offset: 0
The a(5) = 1 through a(10) = 16 partitions:
(32) (321) (43) (53) (54) (64)
(52) (332) (72) (73)
(322) (431) (432) (433)
(3211) (521) (522) (532)
(3221) (531) (541)
(32111) (3222) (721)
(3321) (3322)
(4311) (4321)
(5211) (5221)
(32211) (5311)
(321111) (32221)
(33211)
(43111)
(52111)
(322111)
(3211111)
The complement is counted by
A130689.
The Heinz numbers of these partitions are
A343337.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
Cf.
A066186,
A083710,
A083711,
A097986,
A098965,
A341450,
A343342,
A343345,
A343346,
A343381,
A343382.
-
Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
A342193
Numbers with no prime index dividing all the other prime indices.
Original entry on oeis.org
1, 15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 91, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 195, 201, 203, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 247, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 299
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 105: {2,3,4} 201: {2,19}
15: {2,3} 119: {4,7} 203: {4,10}
33: {2,5} 123: {2,13} 205: {3,13}
35: {3,4} 135: {2,2,2,3} 207: {2,2,9}
45: {2,2,3} 141: {2,15} 209: {5,8}
51: {2,7} 143: {5,6} 215: {3,14}
55: {3,5} 145: {3,10} 217: {4,11}
69: {2,9} 153: {2,2,7} 219: {2,21}
75: {2,3,3} 155: {3,11} 221: {6,7}
77: {4,5} 161: {4,9} 225: {2,2,3,3}
85: {3,7} 165: {2,3,5} 231: {2,4,5}
91: {4,6} 175: {3,3,4} 245: {3,4,4}
93: {2,11} 177: {2,17} 247: {6,8}
95: {3,8} 187: {5,7} 249: {2,23}
99: {2,2,5} 195: {2,3,6} 253: {5,9}
The case with maximum prime index not divisible by all others is
A343338.
The case with maximum prime index divisible by all others is
A343339.
A000070 counts partitions with a selected part.
A001221 counts distinct prime factors.
A299702 lists Heinz numbers of knapsack partitions.
A339564 counts factorizations with a selected factor.
A339563
Squarefree numbers > 1 whose smallest prime index divides all the other prime indices.
Original entry on oeis.org
2, 3, 5, 6, 7, 10, 11, 13, 14, 17, 19, 21, 22, 23, 26, 29, 30, 31, 34, 37, 38, 39, 41, 42, 43, 46, 47, 53, 57, 58, 59, 61, 62, 65, 66, 67, 70, 71, 73, 74, 78, 79, 82, 83, 86, 87, 89, 94, 97, 101, 102, 103, 106, 107, 109, 110, 111, 113, 114, 115, 118, 122, 127
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1} 29: {10} 59: {17}
3: {2} 30: {1,2,3} 61: {18}
5: {3} 31: {11} 62: {1,11}
6: {1,2} 34: {1,7} 65: {3,6}
7: {4} 37: {12} 66: {1,2,5}
10: {1,3} 38: {1,8} 67: {19}
11: {5} 39: {2,6} 70: {1,3,4}
13: {6} 41: {13} 71: {20}
14: {1,4} 42: {1,2,4} 73: {21}
17: {7} 43: {14} 74: {1,12}
19: {8} 46: {1,9} 78: {1,2,6}
21: {2,4} 47: {15} 79: {22}
22: {1,5} 53: {16} 82: {1,13}
23: {9} 57: {2,8} 83: {23}
26: {1,6} 58: {1,10} 86: {1,14}
The complement of the not necessarily squarefree version is
A342193.
A000070 counts partitions with a selected part.
A001221 counts distinct prime factors.
A338470 counts partitions with no dividing part.
-
Select[Range[2,100],SquareFreeQ[#]&&With[{p=PrimePi/@First/@FactorInteger[#]},And@@IntegerQ/@(p/Min@@p)]&]
A343382
Number of strict integer partitions of n with either (1) no part dividing all the others or (2) no part divisible by all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 9, 9, 13, 18, 21, 26, 34, 38, 48, 57, 67, 81, 99, 110, 133, 157, 183, 211, 250, 282, 330, 380, 437, 502, 575, 648, 748, 852, 967, 1095, 1250, 1405, 1597, 1801, 2029, 2287, 2579, 2883, 3245, 3638, 4077, 4557, 5107, 5691, 6356
Offset: 0
The a(0) = 1 through a(11) = 9 partitions (empty columns indicated by dots):
() . . . . (3,2) (3,2,1) (4,3) (5,3) (5,4) (6,4) (6,5)
(5,2) (4,3,1) (7,2) (7,3) (7,4)
(5,2,1) (4,3,2) (5,3,2) (8,3)
(5,3,1) (5,4,1) (9,2)
(7,2,1) (5,4,2)
(4,3,2,1) (6,3,2)
(6,4,1)
(7,3,1)
(5,3,2,1)
The first condition alone gives
A341450.
The second condition alone gives
A343377.
The version for "and" instead of "or" is
A343379.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.
Cf.
A083710,
A097986,
A130689,
A200745,
A264401,
A338470,
A339562,
A342193,
A343337,
A343338,
A343341,
A343342.
-
Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)||UnsameQ@@#&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
A339562
Squarefree numbers with no prime index dividing all the other prime indices.
Original entry on oeis.org
1, 15, 33, 35, 51, 55, 69, 77, 85, 91, 93, 95, 105, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 195, 201, 203, 205, 209, 215, 217, 219, 221, 231, 247, 249, 253, 255, 265, 285, 287, 291, 295, 299, 301, 309, 323, 327, 329, 335, 341, 345, 355, 357, 377, 381
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 141: {2,15} 219: {2,21}
15: {2,3} 143: {5,6} 221: {6,7}
33: {2,5} 145: {3,10} 231: {2,4,5}
35: {3,4} 155: {3,11} 247: {6,8}
51: {2,7} 161: {4,9} 249: {2,23}
55: {3,5} 165: {2,3,5} 253: {5,9}
69: {2,9} 177: {2,17} 255: {2,3,7}
77: {4,5} 187: {5,7} 265: {3,16}
85: {3,7} 195: {2,3,6} 285: {2,3,8}
91: {4,6} 201: {2,19} 287: {4,13}
93: {2,11} 203: {4,10} 291: {2,25}
95: {3,8} 205: {3,13} 295: {3,17}
105: {2,3,4} 209: {5,8} 299: {6,9}
119: {4,7} 215: {3,14} 301: {4,14}
123: {2,13} 217: {4,11} 309: {2,27}
The squarefree complement is
A339563.
These partitions are counted by
A341450.
The not necessarily squarefree version is
A342193.
A000070 counts partitions with a selected part.
A001221 counts distinct prime factors.
Original entry on oeis.org
1, 1, 1, 2, 1, 4, 1, 5, 3, 7, 1, 14, 1, 13, 8, 20, 1, 33, 1, 40, 14, 44, 1, 85, 6, 79, 25, 117, 1, 181, 1, 196, 45, 233, 17, 389, 1, 387, 80, 545, 1, 750, 1, 839, 165, 1004, 1, 1516, 12, 1612, 234, 2040, 1, 2766, 48, 3142, 388, 3720, 1, 5295, 1, 5606, 663, 7038, 83, 9194, 1, 10379, 1005
Offset: 1
From _Gus Wiseman_, Apr 18 2021: (Start)
The a(6) = 4 through a(12) = 13 partitions:
(6) (7) (8) (9) (10) (11) (12)
(3,3) (4,4) (6,3) (5,5) (6,6)
(4,2) (6,2) (3,3,3) (8,2) (8,4)
(2,2,2) (4,2,2) (4,4,2) (9,3)
(2,2,2,2) (6,2,2) (10,2)
(4,2,2,2) (4,4,4)
(2,2,2,2,2) (6,3,3)
(6,4,2)
(8,2,2)
(3,3,3,3)
(4,4,2,2)
(6,2,2,2)
(4,2,2,2,2)
(2,2,2,2,2,2)
(End)
- L. M. Chawla, M. O. Levan and J. E. Maxfield, On a restricted partition function and its tables, J. Natur. Sci. and Math., 12 (1972), 95-101.
The complement (except also without 1's) is counted by
A338470.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.
-
with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l)-1 do c := c+numbpart(l[i]-1) od: RETURN(c): end: for j from 2 to 100 do printf(`%d,`,a(j)) od: # James Sellers, Jun 21 2003
# second Maple program:
a:= n-> max(1, add(combinat[numbpart](d-1), d=numtheory[divisors](n) minus {n})):
seq(a(n), n=1..69); # Alois P. Heinz, Feb 15 2023
-
a[n_] := If[n==1, 1, Sum[PartitionsP[d-1], {d, Most@Divisors[n]}]];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 15 2023 *)
Showing 1-10 of 26 results.
Comments