cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A083711 a(n) = A083710(n) - A000041(n-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 5, 3, 7, 1, 14, 1, 13, 8, 20, 1, 33, 1, 40, 14, 44, 1, 85, 6, 79, 25, 117, 1, 181, 1, 196, 45, 233, 17, 389, 1, 387, 80, 545, 1, 750, 1, 839, 165, 1004, 1, 1516, 12, 1612, 234, 2040, 1, 2766, 48, 3142, 388, 3720, 1, 5295, 1, 5606, 663, 7038, 83, 9194, 1, 10379, 1005
Offset: 1

Views

Author

N. J. A. Sloane, Jun 16 2003

Keywords

Comments

Number of integer partitions of n with no 1's with a part dividing all the others. If n > 0, we can assume such a part is the smallest. - Gus Wiseman, Apr 18 2021

Examples

			From _Gus Wiseman_, Apr 18 2021: (Start)
The a(6) = 4 through a(12) = 13 partitions:
  (6)      (7)  (8)        (9)      (10)         (11)  (12)
  (3,3)         (4,4)      (6,3)    (5,5)              (6,6)
  (4,2)         (6,2)      (3,3,3)  (8,2)              (8,4)
  (2,2,2)       (4,2,2)             (4,4,2)            (9,3)
                (2,2,2,2)           (6,2,2)            (10,2)
                                    (4,2,2,2)          (4,4,4)
                                    (2,2,2,2,2)        (6,3,3)
                                                       (6,4,2)
                                                       (8,2,2)
                                                       (3,3,3,3)
                                                       (4,4,2,2)
                                                       (6,2,2,2)
                                                       (4,2,2,2,2)
                                                       (2,2,2,2,2,2)
(End)
		

References

  • L. M. Chawla, M. O. Levan and J. E. Maxfield, On a restricted partition function and its tables, J. Natur. Sci. and Math., 12 (1972), 95-101.

Crossrefs

Allowing 1's gives A083710.
The strict case is A098965.
The complement (except also without 1's) is counted by A338470.
The dual version is A339619.
A000005 counts divisors.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.

Programs

  • Maple
    with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l)-1 do c := c+numbpart(l[i]-1) od: RETURN(c): end: for j from 2 to 100 do printf(`%d,`,a(j)) od: # James Sellers, Jun 21 2003
    # second Maple program:
    a:= n-> max(1, add(combinat[numbpart](d-1), d=numtheory[divisors](n) minus {n})):
    seq(a(n), n=1..69);  # Alois P. Heinz, Feb 15 2023
  • Mathematica
    a[n_] := If[n==1, 1, Sum[PartitionsP[d-1], {d, Most@Divisors[n]}]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 15 2023 *)

Formula

a(n) = Sum_{ d|n, dA000041(d-1).

Extensions

More terms from James Sellers, Jun 21 2003

A006128 Total number of parts in all partitions of n. Also, sum of largest parts of all partitions of n.

Original entry on oeis.org

0, 1, 3, 6, 12, 20, 35, 54, 86, 128, 192, 275, 399, 556, 780, 1068, 1463, 1965, 2644, 3498, 4630, 6052, 7899, 10206, 13174, 16851, 21522, 27294, 34545, 43453, 54563, 68135, 84927, 105366, 130462, 160876, 198014, 242812, 297201, 362587, 441546, 536104, 649791, 785437, 947812, 1140945, 1371173, 1644136, 1968379, 2351597, 2805218, 3339869, 3970648, 4712040, 5584141, 6606438, 7805507, 9207637
Offset: 0

Views

Author

Keywords

Comments

a(n) = degree of Kac determinant at level n as polynomial in the conformal weight (called h). (Cf. C. Itzykson and J.-M. Drouffe, Statistical Field Theory, Vol. 2, p. 533, eq.(98); reference p. 643, Cambridge University Press, (1989).) - Wolfdieter Lang
Also the number of one-element transitions from the integer partitions of n to the partitions of n-1 for labeled parts with the assumption that from any part z > 1 one can take an element of amount 1 in one way only. That means z is composed of z unlabeled parts of amount 1, i.e. z = 1 + 1 + ... + 1. E.g., for n=3 to n=2 we have a(3) = 6 and [111] --> [11], [111] --> [11], [111] --> [11], [12] --> [11], [12] --> [2], [3] --> [2]. For the case of z composed by labeled elements, z = 1_1 + 1_2 + ... + 1_z, see A066186. - Thomas Wieder, May 20 2004
Number of times a derivative of any order (not 0 of course) appears when expanding the n-th derivative of 1/f(x). For instance (1/f(x))'' = (2 f'(x)^2-f(x) f''(x)) / f(x)^3 which makes a(2) = 3 (by counting k times the k-th power of a derivative). - Thomas Baruchel, Nov 07 2005
Starting with offset 1, = the partition triangle A008284 * [1, 2, 3, ...]. - Gary W. Adamson, Feb 13 2008
Starting with offset 1 equals A000041: (1, 1, 2, 3, 5, 7, 11, ...) convolved with A000005: (1, 2, 2, 3, 2, 4, ...). - Gary W. Adamson, Jun 16 2009
Apart from initial 0 row sums of triangle A066633, also the Möbius transform is A085410. - Gary W. Adamson, Mar 21 2011
More generally, the total number of parts >= k in all partitions of n equals the sum of k-th largest parts of all partitions of n. In this case k = 1. Apart from initial 0 the first column of A181187. - Omar E. Pol, Feb 14 2012
Row sums of triangle A221530. - Omar E. Pol, Jan 21 2013
From Omar E. Pol, Feb 04 2021: (Start)
a(n) is also the total number of divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned divisors are also all parts of all partitions of n.
Apart from initial zero this is also as follows:
Convolution of A000005 and A000041.
Convolution of A006218 and A002865.
Convolution of A341062 and A000070.
Row sums of triangles A221531, A245095, A339258, A340525, A340529. (End)
Number of ways to choose a part index of an integer partition of n, i.e., partitions of n with a selected position. Selecting a part value instead of index gives A000070. - Gus Wiseman, Apr 19 2021

Examples

			For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. The total number of parts is 12. On the other hand, the sum of the largest parts of all partitions is 4 + 2 + 3 + 2 + 1 = 12, equaling the total number of parts, so a(4) = 12. - _Omar E. Pol_, Oct 12 2018
		

References

  • S. M. Luthra, On the average number of summands in partitions of n, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal of A210485.
Column k=1 of A256193.
The version for normal multisets is A001787.
The unordered version is A001792.
The strict case is A015723.
The version for factorizations is A066637.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A336875 counts compositions with a selected part.
A339564 counts factorizations with a selected factor.

Programs

  • GAP
    List([0..60],n->Length(Flat(Partitions(n)))); # Muniru A Asiru, Oct 12 2018
  • Haskell
    a006128 = length . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
    
  • Maple
    g:= add(n*x^n*mul(1/(1-x^k), k=1..n), n=1..61):
    a:= n-> coeff(series(g,x,62),x,n):
    seq(a(n), n=0..61);
    # second Maple program:
    a:= n-> add(combinat[numbpart](n-j)*numtheory[tau](j), j=1..n):
    seq(a(n), n=0..61);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    a[n_] := Sum[DivisorSigma[0, m] PartitionsP[n - m], {m, 1, n}]; Table[ a[n], {n, 0, 41}]
    CoefficientList[ Series[ Sum[n*x^n*Product[1/(1 - x^k), {k, n}], {n, 100}], {x, 0, 100}], x]
    a[n_] := Plus @@ Max /@ IntegerPartitions@ n; Array[a, 45] (* Robert G. Wilson v, Apr 12 2011 *)
    Join[{0}, ((Log[1 - x] + QPolyGamma[1, x])/(Log[x] QPochhammer[x]) + O[x]^60)[[3]]] (* Vladimir Reshetnikov, Nov 17 2016 *)
    Length /@ Table[IntegerPartitions[n] // Flatten, {n, 50}] (* Shouvik Datta, Sep 12 2021 *)
  • PARI
    f(n)= {local(v,i,k,s,t);v=vector(n,k,0);v[n]=2;t=0;while(v[1]1,i--;s+=i*(v[i]=(n-s)\i));t+=sum(k=1,n,v[k]));t } /* Thomas Baruchel, Nov 07 2005 */
    
  • PARI
    a(n) = sum(m=1, n, numdiv(m)*numbpart(n-m)) \\ Michel Marcus, Jul 13 2013
    
  • Python
    from sympy import divisor_count, npartitions
    def a(n): return sum([divisor_count(m)*npartitions(n - m) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 25 2017
    

Formula

G.f.: Sum_{n>=1} n*x^n / Product_{k=1..n} (1-x^k).
G.f.: Sum_{k>=1} x^k/(1-x^k) / Product_{m>=1} (1-x^m).
a(n) = Sum_{k=1..n} k*A008284(n, k).
a(n) = Sum_{m=1..n} of the number of divisors of m * number of partitions of n-m.
Note that the formula for the above comment is a(n) = Sum_{m=1..n} d(m)*p(n-m) = Sum_{m=1..n} A000005(m)*A000041(n-m), if n >= 1. - Omar E. Pol, Jan 21 2013
Erdős and Lehner show that if u(n) denotes the average largest part in a partition of n, then u(n) ~ constant*sqrt(n)*log n.
a(n) = A066897(n) + A066898(n), n>0. - Reinhard Zumkeller, Mar 09 2012
a(n) = A066186(n) - A196087(n), n >= 1. - Omar E. Pol, Apr 22 2012
a(n) = A194452(n) + A024786(n+1). - Omar E. Pol, May 19 2012
a(n) = A000203(n) + A220477(n). - Omar E. Pol, Jan 17 2013
a(n) = Sum_{m=1..p(n)} A194446(m) = Sum_{m=1..p(n)} A141285(m), where p(n) = A000041(n), n >= 1. - Omar E. Pol, May 12 2013
a(n) = A198381(n) + A026905(n), n >= 1. - Omar E. Pol, Aug 10 2013
a(n) = O(sqrt(n)*log(n)*p(n)), where p(n) is the partition function A000041(n). - Peter Bala, Dec 23 2013
a(n) = Sum_{m=1..n} A006218(m)*A002865(n-m), n >= 1. - Omar E. Pol, Jul 14 2014
From Vaclav Kotesovec, Jun 23 2015: (Start)
Asymptotics (Luthra, 1957): a(n) = p(n) * (C*N^(1/2) + C^2/2) * (log(C*N^(1/2)) + gamma) + (1+C^2)/4 + O(N^(-1/2)*log(N)), where N = n - 1/24, C = sqrt(6)/Pi, gamma is the Euler-Mascheroni constant A001620 and p(n) is the partition function A000041(n).
The formula a(n) = p(n) * (sqrt(3*n/(2*Pi)) * (log(n) + 2*gamma - log(Pi/6)) + O(log(n)^3)) in the abstract of the article by Kessler and Livingston (cited also in the book by Sandor, p. 495) is incorrect!
Right is: a(n) = p(n) * (sqrt(3*n/2)/Pi * (log(n) + 2*gamma - log(Pi^2/6)) + O(log(n)^3))
or a(n) ~ exp(Pi*sqrt(2*n/3)) * (log(6*n/Pi^2) + 2*gamma) / (4*Pi*sqrt(2*n)).
(End)
a(n) = Sum_{m=1..n} A341062(m)*A000070(n-m), n >= 1. - Omar E. Pol, Feb 05 2021 2014

A018783 Number of partitions of n into parts having a common factor.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 4, 1, 5, 3, 8, 1, 14, 1, 16, 9, 22, 1, 38, 1, 45, 17, 57, 1, 94, 7, 102, 30, 138, 1, 218, 1, 231, 58, 298, 21, 451, 1, 491, 103, 644, 1, 919, 1, 1005, 203, 1256, 1, 1784, 15, 1993, 299, 2439, 1, 3365, 62, 3735, 492, 4566, 1, 6252, 1, 6843, 819, 8349, 107, 11096
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat):
    a:= n-> `if`(n=0, 0,
             numbpart(n) -add(mobius(n/d)*numbpart(d), d=divisors(n))):
    seq(a(n), n=0..100); # Alois P. Heinz, Nov 29 2011
  • Mathematica
    A000837[n_] := Sum[ MoebiusMu[n/d]*PartitionsP[d], {d, Divisors[n]}]; a[0] = 0; a[n_] := PartitionsP[n] - A000837[n]; Table[a[n], {n, 0, 66}] (* Jean-François Alcover, Oct 03 2013, after Vladeta Jovovic *)
  • PARI
    a(n) = - sumdiv(n, d, (dMichel Marcus, Oct 07 2017

Formula

a(n) = -Sum_{d|n, dA000041(d) = A000041(n) - A000837(n). - Vladeta Jovovic, Jun 17 2003

A264401 Triangle read by rows: T(n,k) is the number of partitions of n having least gap k.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 4, 4, 2, 1, 4, 6, 4, 1, 7, 8, 5, 2, 8, 11, 8, 3, 12, 15, 10, 4, 1, 14, 20, 15, 6, 1, 21, 26, 19, 9, 2, 24, 35, 27, 12, 3, 34, 45, 34, 17, 5, 41, 58, 47, 23, 6, 1, 55, 75, 59, 31, 10, 1, 66, 96, 79, 41, 13, 2
Offset: 0

Views

Author

Emeric Deutsch, Nov 21 2015

Keywords

Comments

The "least gap" or "mex" of a partition is the least positive integer that is not a part of the partition. For example, the least gap of the partition [7,4,2,2,1] is 3.
Sum of entries in row n is A000041(n).
T(n,1) = A002865(n).
Sum_{k>=1} k*T(n,k) = A022567(n).

Examples

			Row n=5 is 2,3,2; indeed, the least gaps of [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], and [1,1,1,1,1] are 1, 2, 1, 2, 3, 3, and 2, respectively (i.e., two 1s, three 2s, and two 3s).
Triangle begins:
   1
   0   1
   1   1
   1   1   1
   2   2   1
   2   3   2
   4   4   2   1
   4   6   4   1
   7   8   5   2
   8  11   8   3
  12  15  10   4   1
  14  20  15   6   1
  21  26  19   9   2
		

Crossrefs

Row sums are A000041.
Row lengths are A002024.
Column k = 1 is A002865.
Column k = 2 is A027336.
The strict case is A343348.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A257993 gives the least gap of the partition with Heinz number n.
A339564 counts factorizations with a selected factor.
A342050 ranks partitions with even least gap.
A342051 ranks partitions with odd least gap.

Programs

  • Maple
    g := (sum(t^j*x^((1/2)*j*(j-1))*(1-x^j), j = 1 .. 80))/(product(1-x^i, i = 1 .. 80)): gser := simplify(series(g, x = 0, 23)): for n from 0 to 30 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, j), j = 1 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, `if`(i=0, [1, 0],
          [0, x]), `if`(i<1, 0, (p-> [0, p[2] +p[1]*x^i])(
          b(n, i-1)) +add(b(n-i*j, i-1), j=1..n/i)))
        end:
    T:= n->(p->seq(coeff(p, x, i), i=1..degree(p)))(b(n, n+1)[2]):
    seq(T(n), n=0..20);  # Alois P. Heinz, Nov 29 2015
  • Mathematica
    Needs["Combinatorica`"]; {1, 0}~Join~Flatten[Table[Count[Map[If[# == {}, 0, First@ #] &@ Complement[Range@ n, #] &, Combinatorica`Partitions@ n], n_ /; n == k], {n, 17}, {k, n}] /. 0 -> Nothing] (* Michael De Vlieger, Nov 21 2015 *)
    mingap[q_]:=Min@@Complement[Range[If[q=={},0,Max[q]]+1],q];Table[Length[Select[IntegerPartitions[n],mingap[#]==k&]],{n,0,15},{k,Round[Sqrt[2*(n+1)]]}] (* Gus Wiseman, Apr 19 2021 *)
    b[n_, i_] := b[n, i] = If[n == 0, If[i == 0, {1, 0}, {0, x}], If[i<1, {0, 0}, {0, #[[2]] + #[[1]]*x^i}&[b[n, i-1]] + Sum[b[n-i*j, i - 1], {j, 1, n/i}]]];
    T[n_] := CoefficientList[b[n, n + 1], x][[2]] // Rest;
    T /@ Range[0, 20] // Flatten (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)

Formula

G.f.: G(t,x) = Sum_{j>=1} (t^j*x^{j(j-1)/2}*(1-x^j))/Product_{i>=1}(1-x^i).

A097986 Number of strict integer partitions of n with a part dividing all the other parts.

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 3, 5, 5, 7, 6, 12, 9, 13, 15, 20, 18, 28, 26, 37, 39, 47, 49, 71, 68, 85, 94, 117, 120, 159, 160, 201, 216, 257, 277, 348, 357, 430, 470, 562, 592, 720, 758, 901, 981, 1134, 1220, 1457, 1542, 1798, 1952, 2250, 2419, 2819, 3023, 3482, 3773, 4291
Offset: 1

Views

Author

Vladeta Jovovic, Oct 23 2004

Keywords

Comments

If n > 0, we can assume such a part is the smallest. - Gus Wiseman, Apr 23 2021
Also the number of uniform (constant multiplicity) partitions of n containing 1, ranked by A367586. The strict case is A096765. The version without 1 is A329436. - Gus Wiseman, Dec 01 2023

Examples

			From _Gus Wiseman_, Dec 01 2023: (Start)
The a(1) = 1 through a(8) = 5 strict partitions with a part dividing all the other parts:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)
            (2,1)  (3,1)  (4,1)  (4,2)    (6,1)    (6,2)
                                 (5,1)    (4,2,1)  (7,1)
                                 (3,2,1)           (4,3,1)
                                                   (5,2,1)
The a(1) = 1 through a(8) = 5 uniform partitions containing 1:
  (1)  (11)  (21)   (31)    (41)     (51)      (61)       (71)
             (111)  (1111)  (11111)  (321)     (421)      (431)
                                     (2211)    (1111111)  (521)
                                     (111111)             (3311)
                                                          (11111111)
(End)
		

Crossrefs

The non-strict version is A083710.
The case with no 1's is A098965.
The Heinz numbers of these partitions are A339563.
The strict complement is counted by A341450.
The version for "divisible by" instead of "dividing" is A343347.
The case where there is also a part divisible by all the others is A343378.
The case where there is no part divisible by all the others is A343381.
A000005 counts divisors.
A000009 counts strict partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A018818 counts partitions into divisors (strict: A033630).
A167865 counts strict chains of divisors > 1 summing to n.

Programs

  • Mathematica
    Take[ CoefficientList[ Expand[ Sum[x^k*Product[1 + x^(k*i), {i, 2, 62}], {k, 62}]], x], {2, 60}] (* Robert G. Wilson v, Nov 01 2004 *)
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Or@@Table[And@@IntegerQ/@(#/x), {x,#}]&]], {n,0,30}] (* Gus Wiseman, Apr 23 2021 *)
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(sum(k=1,N,x^k*prod(i=2,N-k, (1+x^(k*i)))))}
    A_x(50) \\ John Tyler Rascoe, Nov 19 2024

Formula

a(n) = Sum_{d|n} A025147(d-1).
G.f.: Sum_{k>=1} (x^k*Product_{i>=2} (1+x^(k*i))).
a(n) ~ exp(Pi*sqrt(n/3)) / (8*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Jul 06 2025

Extensions

More terms from Robert G. Wilson v, Nov 01 2004
Name shortened by Gus Wiseman, Apr 23 2021

A130689 Number of partitions of n such that every part divides the largest part; a(0) = 1.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 11, 16, 19, 26, 28, 41, 43, 56, 65, 82, 88, 115, 122, 155, 174, 209, 225, 283, 305, 363, 402, 477, 514, 622, 666, 783, 858, 990, 1078, 1268, 1362, 1561, 1708, 1958, 2111, 2433, 2613, 2976, 3247, 3652, 3938, 4482, 4821, 5422
Offset: 0

Views

Author

Vladeta Jovovic, Jul 01 2007

Keywords

Comments

First differs from A130714 at a(11) = 28, A130714(11) = 27. - Gus Wiseman, Apr 23 2021

Examples

			For n = 6 we have 10 such partitions: [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 2, 2], [2, 2, 2], [1, 1, 1, 3], [3, 3], [1, 1, 4], [2, 4], [1, 5], [6].
From _Gus Wiseman_, Apr 18 2021: (Start)
The a(1) = 1 through a(8) = 16 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (41)     (33)      (61)       (44)
             (111)  (31)    (221)    (42)      (331)      (62)
                    (211)   (311)    (51)      (421)      (71)
                    (1111)  (2111)   (222)     (511)      (422)
                            (11111)  (411)     (2221)     (611)
                                     (2211)    (4111)     (2222)
                                     (3111)    (22111)    (3311)
                                     (21111)   (31111)    (4211)
                                     (111111)  (211111)   (5111)
                                               (1111111)  (22211)
                                                          (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
(End)
		

Crossrefs

The dual version is A083710.
The case without 1's is A339619.
The Heinz numbers of these partitions are the complement of A343337.
The complement is counted by A343341.
The strict case is A343347.
The complement in the strict case is counted by A343377.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A072233 counts partitions by sum and greatest part.

Programs

  • Mathematica
    Table[If[n==0,1,Length[Select[IntegerPartitions[n],FreeQ[#,1]&&And@@IntegerQ/@(Max@@#/#)&]]],{n,0,30}] (* Gus Wiseman, Apr 18 2021 *)
  • PARI
    seq(n)={Vec(1 + sum(m=1, n, my(u=divisors(m)); x^m/prod(i=1, #u, 1 - x^u[i] + O(x^(n-m+1)))))} \\ Andrew Howroyd, Apr 17 2021

Formula

G.f.: 1 + Sum_{n>0} x^n/Product_{d divides n} (1-x^d).

A341450 Number of strict integer partitions of n that are empty or have smallest part not dividing all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 3, 9, 9, 12, 12, 20, 18, 28, 27, 37, 42, 55, 51, 74, 80, 98, 105, 136, 137, 180, 189, 232, 255, 308, 320, 403, 434, 512, 551, 668, 706, 852, 915, 1067, 1170, 1370, 1453, 1722, 1860, 2145, 2332, 2701, 2899, 3355, 3626, 4144
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

Alternative name: Number of strict integer partitions of n with no part dividing all the others.

Examples

			The a(0) = 1 through a(15) = 12 strict partitions (empty columns indicated by dots, 0 represents the empty partition, A..D = 10..13):
  0  .  .  .  .  32   .  43   53   54    64    65    75    76    86     87
                         52        72    73    74    543   85    95     96
                                   432   532   83    732   94    A4     B4
                                               92          A3    B3     D2
                                               542         B2    653    654
                                               632         643   743    753
                                                           652   752    762
                                                           742   932    843
                                                           832   5432   852
                                                                        942
                                                                        A32
                                                                        6432
		

Crossrefs

The complement is counted by A097986 (non-strict: A083710, rank: A339563).
The complement with no 1's is A098965 (non-strict: A083711).
The non-strict version is A338470.
The Heinz numbers of these partitions are A339562 (non-strict: A342193).
The case with greatest part not divisible by all others is A343379.
The case with greatest part divisible by all others is A343380.
A000009 counts strict partitions (non-strict: A000041).
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
Sequences with similar formulas: A024994, A047966, A047968, A168111.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]

Formula

a(n > 0) = A000009(n) - Sum_{d|n} A025147(d-1).

A338470 Number of integer partitions of n with no part dividing all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 3, 2, 5, 5, 13, 7, 23, 21, 33, 35, 65, 55, 104, 97, 151, 166, 252, 235, 377, 399, 549, 591, 846, 858, 1237, 1311, 1749, 1934, 2556, 2705, 3659, 3991, 5090, 5608, 7244, 7841, 10086, 11075, 13794, 15420, 19195, 21003, 26240, 29089, 35483
Offset: 0

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

Alternative name: Number of integer partitions of n that are empty or have smallest part not dividing all the others.

Examples

			The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
  (32)  .  (43)   (53)   (54)    (64)    (65)     (75)
           (52)   (332)  (72)    (73)    (74)     (543)
           (322)         (432)   (433)   (83)     (552)
                         (522)   (532)   (92)     (732)
                         (3222)  (3322)  (443)    (4332)
                                         (533)    (5322)
                                         (542)    (33222)
                                         (632)
                                         (722)
                                         (3332)
                                         (4322)
                                         (5222)
                                         (32222)
		

Crossrefs

The complement is A083710 (strict: A097986).
The strict case is A341450.
The Heinz numbers of these partitions are A342193.
The dual version is A343341.
The case with maximum part not divisible by all the others is A343342.
The case with maximum part divisible by all the others is A343344.
A000005 counts divisors.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A001787 count normal multisets with a selected position.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A276024 counts positive subset sums.
Sequences with similar formulas: A024994, A047966, A047968, A168111.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
    (* Second program: *)
    a[n_] := If[n == 0, 1, PartitionsP[n] - Sum[PartitionsP[d-1], {d, Divisors[n]}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
  • PARI
    a(n)={numbpart(n) - if(n, sumdiv(n, d, numbpart(d-1)))} \\ Andrew Howroyd, Mar 25 2021

Formula

a(n) = A000041(n) - Sum_{d|n} A000041(d-1) for n > 0. - Andrew Howroyd, Mar 25 2021

A343341 Number of integer partitions of n with no part divisible by all the others.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 4, 6, 11, 16, 28, 36, 58, 79, 111, 149, 209, 270, 368, 472, 618, 793, 1030, 1292, 1653, 2073, 2608, 3241, 4051, 4982, 6176, 7566, 9285, 11320, 13805, 16709, 20275, 24454, 29477, 35380, 42472, 50741, 60648, 72199, 85887, 101906, 120816
Offset: 0

Views

Author

Gus Wiseman, Apr 15 2021

Keywords

Comments

Alternative name: Number of integer partitions of n that are either empty, or have greatest part not divisible by all the others.

Examples

			The a(5) = 1 through a(10) = 16 partitions:
  (32)  (321)  (43)    (53)     (54)      (64)
               (52)    (332)    (72)      (73)
               (322)   (431)    (432)     (433)
               (3211)  (521)    (522)     (532)
                       (3221)   (531)     (541)
                       (32111)  (3222)    (721)
                                (3321)    (3322)
                                (4311)    (4321)
                                (5211)    (5221)
                                (32211)   (5311)
                                (321111)  (32221)
                                          (33211)
                                          (43111)
                                          (52111)
                                          (322111)
                                          (3211111)
		

Crossrefs

The complement is counted by A130689.
The dual version is A338470.
The Heinz numbers of these partitions are A343337.
The strict case is A343377.
A000009 counts strict partitions.
A000041 counts partitions.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]

A342193 Numbers with no prime index dividing all the other prime indices.

Original entry on oeis.org

1, 15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 91, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 195, 201, 203, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 247, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 299
Offset: 1

Views

Author

Gus Wiseman, Apr 11 2021

Keywords

Comments

Alternative name: 1 and numbers with smallest prime index not dividing all the other prime indices.
First differs from A339562 in having 45.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also 1 and Heinz numbers of integer partitions with smallest part not dividing all the others (counted by A338470). The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      1: {}         105: {2,3,4}      201: {2,19}
     15: {2,3}      119: {4,7}        203: {4,10}
     33: {2,5}      123: {2,13}       205: {3,13}
     35: {3,4}      135: {2,2,2,3}    207: {2,2,9}
     45: {2,2,3}    141: {2,15}       209: {5,8}
     51: {2,7}      143: {5,6}        215: {3,14}
     55: {3,5}      145: {3,10}       217: {4,11}
     69: {2,9}      153: {2,2,7}      219: {2,21}
     75: {2,3,3}    155: {3,11}       221: {6,7}
     77: {4,5}      161: {4,9}        225: {2,2,3,3}
     85: {3,7}      165: {2,3,5}      231: {2,4,5}
     91: {4,6}      175: {3,3,4}      245: {3,4,4}
     93: {2,11}     177: {2,17}       247: {6,8}
     95: {3,8}      187: {5,7}        249: {2,23}
     99: {2,2,5}    195: {2,3,6}      253: {5,9}
		

Crossrefs

The complement is counted by A083710 (strict: A097986).
The complement with no 1's is A083711 (strict: A098965).
These partitions are counted by A338470 (strict: A341450).
The squarefree case is A339562, with squarefree complement A339563.
The case with maximum prime index not divisible by all others is A343338.
The case with maximum prime index divisible by all others is A343339.
A000005 counts divisors.
A000070 counts partitions with a selected part.
A001221 counts distinct prime factors.
A006128 counts partitions with a selected position (strict: A015723).
A056239 adds up prime indices, row sums of A112798.
A299702 lists Heinz numbers of knapsack partitions.
A339564 counts factorizations with a selected factor.

Programs

  • Mathematica
    Select[Range[100],#==1||With[{p=PrimePi/@First/@FactorInteger[#]},!And@@IntegerQ/@(p/Min@@p)]&]
Showing 1-10 of 36 results. Next