Original entry on oeis.org
1, 1, 1, 2, 1, 4, 1, 5, 3, 7, 1, 14, 1, 13, 8, 20, 1, 33, 1, 40, 14, 44, 1, 85, 6, 79, 25, 117, 1, 181, 1, 196, 45, 233, 17, 389, 1, 387, 80, 545, 1, 750, 1, 839, 165, 1004, 1, 1516, 12, 1612, 234, 2040, 1, 2766, 48, 3142, 388, 3720, 1, 5295, 1, 5606, 663, 7038, 83, 9194, 1, 10379, 1005
Offset: 1
From _Gus Wiseman_, Apr 18 2021: (Start)
The a(6) = 4 through a(12) = 13 partitions:
(6) (7) (8) (9) (10) (11) (12)
(3,3) (4,4) (6,3) (5,5) (6,6)
(4,2) (6,2) (3,3,3) (8,2) (8,4)
(2,2,2) (4,2,2) (4,4,2) (9,3)
(2,2,2,2) (6,2,2) (10,2)
(4,2,2,2) (4,4,4)
(2,2,2,2,2) (6,3,3)
(6,4,2)
(8,2,2)
(3,3,3,3)
(4,4,2,2)
(6,2,2,2)
(4,2,2,2,2)
(2,2,2,2,2,2)
(End)
- L. M. Chawla, M. O. Levan and J. E. Maxfield, On a restricted partition function and its tables, J. Natur. Sci. and Math., 12 (1972), 95-101.
The complement (except also without 1's) is counted by
A338470.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.
-
with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l)-1 do c := c+numbpart(l[i]-1) od: RETURN(c): end: for j from 2 to 100 do printf(`%d,`,a(j)) od: # James Sellers, Jun 21 2003
# second Maple program:
a:= n-> max(1, add(combinat[numbpart](d-1), d=numtheory[divisors](n) minus {n})):
seq(a(n), n=1..69); # Alois P. Heinz, Feb 15 2023
-
a[n_] := If[n==1, 1, Sum[PartitionsP[d-1], {d, Most@Divisors[n]}]];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 15 2023 *)
A006128
Total number of parts in all partitions of n. Also, sum of largest parts of all partitions of n.
Original entry on oeis.org
0, 1, 3, 6, 12, 20, 35, 54, 86, 128, 192, 275, 399, 556, 780, 1068, 1463, 1965, 2644, 3498, 4630, 6052, 7899, 10206, 13174, 16851, 21522, 27294, 34545, 43453, 54563, 68135, 84927, 105366, 130462, 160876, 198014, 242812, 297201, 362587, 441546, 536104, 649791, 785437, 947812, 1140945, 1371173, 1644136, 1968379, 2351597, 2805218, 3339869, 3970648, 4712040, 5584141, 6606438, 7805507, 9207637
Offset: 0
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1]. The total number of parts is 12. On the other hand, the sum of the largest parts of all partitions is 4 + 2 + 3 + 2 + 1 = 12, equaling the total number of parts, so a(4) = 12. - _Omar E. Pol_, Oct 12 2018
- S. M. Luthra, On the average number of summands in partitions of n, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
- Paul Erdős and Joseph Lehner, The distribution of the number of summands in the partitions of a positive integer, Duke Math. J. 8, (1941), 335-345.
- John A. Ewell, Additive evaluation of the divisor function, Fibonacci Quart. 45 (2007), no. 1, 22-25. See Table 1.
- Guo-Niu Han, An explicit expansion formula for the powers of the Euler Product in terms of partition hook lengths, arXiv:0804.1849 [math.CO], 2008; see p.27
- I. Kessler and M. Livingston, The expected number of parts in a partition of n, Monatsh. Math. 81 (1976), no. 3, 203-212.
- I. Kessler and M. Livingston, The expected number of parts in a partition of n, Monatsh. Math. 81 (1976), no. 3, 203-212.
- Martin Klazar, What is an answer? — remarks, results and problems on PIO formulas in combinatorial enumeration, part I, arXiv:1808.08449 [math.CO], 2018.
- Vaclav Kotesovec, Graph - The asymptotic ratio
- Arnold Knopfmacher and Neville Robbins, Identities for the total number of parts in partitions of integers, Util. Math. 67 (2005), 9-18.
- S. M. Luthra, On the average number of summands in partitions of n, Proc. Nat. Inst. Sci. India Part. A, 23 (1957), p. 483-498.
- C. L. Mallows & N. J. A. Sloane, Emails, May 1991
- C. L. Mallows & N. J. A. Sloane, Emails, Jun. 1991
- Ljuben Mutafchiev, On the Largest Part Size and Its Multiplicity of a Random Integer Partition, arXiv:1712.03233 [math.PR], 2017.
- Omar E. Pol, Illustration of initial terms
- J. Sandor, D. S. Mitrinovic, B. Crstici, Handbook of Number Theory I, Volume 1, Springer, 2005, p. 495.
- Eric Weisstein's World of Mathematics, q-Polygamma Function, q-Pochhammer Symbol.
- H. S. Wilf, A unified setting for selection algorithms (II), Annals Discrete Math., 2 (1978), 135-148.
The version for normal multisets is
A001787.
The version for factorizations is
A066637.
A000070 counts partitions with a selected part.
A336875 counts compositions with a selected part.
A339564 counts factorizations with a selected factor.
-
List([0..60],n->Length(Flat(Partitions(n)))); # Muniru A Asiru, Oct 12 2018
-
a006128 = length . concat . ps 1 where
ps _ 0 = [[]]
ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
-- Reinhard Zumkeller, Jul 13 2013
-
g:= add(n*x^n*mul(1/(1-x^k), k=1..n), n=1..61):
a:= n-> coeff(series(g,x,62),x,n):
seq(a(n), n=0..61);
# second Maple program:
a:= n-> add(combinat[numbpart](n-j)*numtheory[tau](j), j=1..n):
seq(a(n), n=0..61); # Alois P. Heinz, Aug 23 2019
-
a[n_] := Sum[DivisorSigma[0, m] PartitionsP[n - m], {m, 1, n}]; Table[ a[n], {n, 0, 41}]
CoefficientList[ Series[ Sum[n*x^n*Product[1/(1 - x^k), {k, n}], {n, 100}], {x, 0, 100}], x]
a[n_] := Plus @@ Max /@ IntegerPartitions@ n; Array[a, 45] (* Robert G. Wilson v, Apr 12 2011 *)
Join[{0}, ((Log[1 - x] + QPolyGamma[1, x])/(Log[x] QPochhammer[x]) + O[x]^60)[[3]]] (* Vladimir Reshetnikov, Nov 17 2016 *)
Length /@ Table[IntegerPartitions[n] // Flatten, {n, 50}] (* Shouvik Datta, Sep 12 2021 *)
-
f(n)= {local(v,i,k,s,t);v=vector(n,k,0);v[n]=2;t=0;while(v[1]1,i--;s+=i*(v[i]=(n-s)\i));t+=sum(k=1,n,v[k]));t } /* Thomas Baruchel, Nov 07 2005 */
-
a(n) = sum(m=1, n, numdiv(m)*numbpart(n-m)) \\ Michel Marcus, Jul 13 2013
-
from sympy import divisor_count, npartitions
def a(n): return sum([divisor_count(m)*npartitions(n - m) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 25 2017
A018783
Number of partitions of n into parts having a common factor.
Original entry on oeis.org
0, 0, 1, 1, 2, 1, 4, 1, 5, 3, 8, 1, 14, 1, 16, 9, 22, 1, 38, 1, 45, 17, 57, 1, 94, 7, 102, 30, 138, 1, 218, 1, 231, 58, 298, 21, 451, 1, 491, 103, 644, 1, 919, 1, 1005, 203, 1256, 1, 1784, 15, 1993, 299, 2439, 1, 3365, 62, 3735, 492, 4566, 1, 6252, 1, 6843, 819, 8349, 107, 11096
Offset: 0
-
with(numtheory): with(combinat):
a:= n-> `if`(n=0, 0,
numbpart(n) -add(mobius(n/d)*numbpart(d), d=divisors(n))):
seq(a(n), n=0..100); # Alois P. Heinz, Nov 29 2011
-
A000837[n_] := Sum[ MoebiusMu[n/d]*PartitionsP[d], {d, Divisors[n]}]; a[0] = 0; a[n_] := PartitionsP[n] - A000837[n]; Table[a[n], {n, 0, 66}] (* Jean-François Alcover, Oct 03 2013, after Vladeta Jovovic *)
-
a(n) = - sumdiv(n, d, (dMichel Marcus, Oct 07 2017
A264401
Triangle read by rows: T(n,k) is the number of partitions of n having least gap k.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 3, 2, 4, 4, 2, 1, 4, 6, 4, 1, 7, 8, 5, 2, 8, 11, 8, 3, 12, 15, 10, 4, 1, 14, 20, 15, 6, 1, 21, 26, 19, 9, 2, 24, 35, 27, 12, 3, 34, 45, 34, 17, 5, 41, 58, 47, 23, 6, 1, 55, 75, 59, 31, 10, 1, 66, 96, 79, 41, 13, 2
Offset: 0
Row n=5 is 2,3,2; indeed, the least gaps of [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], and [1,1,1,1,1] are 1, 2, 1, 2, 3, 3, and 2, respectively (i.e., two 1s, three 2s, and two 3s).
Triangle begins:
1
0 1
1 1
1 1 1
2 2 1
2 3 2
4 4 2 1
4 6 4 1
7 8 5 2
8 11 8 3
12 15 10 4 1
14 20 15 6 1
21 26 19 9 2
- Alois P. Heinz, Rows n = 0..1000, flattened
- George E. Andrews and David Newman, Partitions and the Minimal Excludant, Annals of Combinatorics, Volume 23, May 2019, Pages 249-254.
- P. J. Grabner and A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J., 12, 2006, 439-454.
- Brian Hopkins, James A. Sellers, and Dennis Stanton, Dyson's Crank and the Mex of Integer Partitions, arXiv:2009.10873 [math.CO], 2020.
- Wikipedia, Mex (mathematics)
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A257993 gives the least gap of the partition with Heinz number n.
A339564 counts factorizations with a selected factor.
A342050 ranks partitions with even least gap.
A342051 ranks partitions with odd least gap.
-
g := (sum(t^j*x^((1/2)*j*(j-1))*(1-x^j), j = 1 .. 80))/(product(1-x^i, i = 1 .. 80)): gser := simplify(series(g, x = 0, 23)): for n from 0 to 30 do P[n] := sort(coeff(gser, x, n)) end do: for n from 0 to 25 do seq(coeff(P[n], t, j), j = 1 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, `if`(i=0, [1, 0],
[0, x]), `if`(i<1, 0, (p-> [0, p[2] +p[1]*x^i])(
b(n, i-1)) +add(b(n-i*j, i-1), j=1..n/i)))
end:
T:= n->(p->seq(coeff(p, x, i), i=1..degree(p)))(b(n, n+1)[2]):
seq(T(n), n=0..20); # Alois P. Heinz, Nov 29 2015
-
Needs["Combinatorica`"]; {1, 0}~Join~Flatten[Table[Count[Map[If[# == {}, 0, First@ #] &@ Complement[Range@ n, #] &, Combinatorica`Partitions@ n], n_ /; n == k], {n, 17}, {k, n}] /. 0 -> Nothing] (* Michael De Vlieger, Nov 21 2015 *)
mingap[q_]:=Min@@Complement[Range[If[q=={},0,Max[q]]+1],q];Table[Length[Select[IntegerPartitions[n],mingap[#]==k&]],{n,0,15},{k,Round[Sqrt[2*(n+1)]]}] (* Gus Wiseman, Apr 19 2021 *)
b[n_, i_] := b[n, i] = If[n == 0, If[i == 0, {1, 0}, {0, x}], If[i<1, {0, 0}, {0, #[[2]] + #[[1]]*x^i}&[b[n, i-1]] + Sum[b[n-i*j, i - 1], {j, 1, n/i}]]];
T[n_] := CoefficientList[b[n, n + 1], x][[2]] // Rest;
T /@ Range[0, 20] // Flatten (* Jean-François Alcover, May 21 2021, after Alois P. Heinz *)
A097986
Number of strict integer partitions of n with a part dividing all the other parts.
Original entry on oeis.org
1, 1, 2, 2, 2, 4, 3, 5, 5, 7, 6, 12, 9, 13, 15, 20, 18, 28, 26, 37, 39, 47, 49, 71, 68, 85, 94, 117, 120, 159, 160, 201, 216, 257, 277, 348, 357, 430, 470, 562, 592, 720, 758, 901, 981, 1134, 1220, 1457, 1542, 1798, 1952, 2250, 2419, 2819, 3023, 3482, 3773, 4291
Offset: 1
From _Gus Wiseman_, Dec 01 2023: (Start)
The a(1) = 1 through a(8) = 5 strict partitions with a part dividing all the other parts:
(1) (2) (3) (4) (5) (6) (7) (8)
(2,1) (3,1) (4,1) (4,2) (6,1) (6,2)
(5,1) (4,2,1) (7,1)
(3,2,1) (4,3,1)
(5,2,1)
The a(1) = 1 through a(8) = 5 uniform partitions containing 1:
(1) (11) (21) (31) (41) (51) (61) (71)
(111) (1111) (11111) (321) (421) (431)
(2211) (1111111) (521)
(111111) (3311)
(11111111)
(End)
The Heinz numbers of these partitions are
A339563.
The strict complement is counted by
A341450.
The version for "divisible by" instead of "dividing" is
A343347.
The case where there is also a part divisible by all the others is
A343378.
The case where there is no part divisible by all the others is
A343381.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
-
Take[ CoefficientList[ Expand[ Sum[x^k*Product[1 + x^(k*i), {i, 2, 62}], {k, 62}]], x], {2, 60}] (* Robert G. Wilson v, Nov 01 2004 *)
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Or@@Table[And@@IntegerQ/@(#/x), {x,#}]&]], {n,0,30}] (* Gus Wiseman, Apr 23 2021 *)
-
A_x(N) = {my(x='x+O('x^N)); Vec(sum(k=1,N,x^k*prod(i=2,N-k, (1+x^(k*i)))))}
A_x(50) \\ John Tyler Rascoe, Nov 19 2024
A130689
Number of partitions of n such that every part divides the largest part; a(0) = 1.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 10, 11, 16, 19, 26, 28, 41, 43, 56, 65, 82, 88, 115, 122, 155, 174, 209, 225, 283, 305, 363, 402, 477, 514, 622, 666, 783, 858, 990, 1078, 1268, 1362, 1561, 1708, 1958, 2111, 2433, 2613, 2976, 3247, 3652, 3938, 4482, 4821, 5422
Offset: 0
For n = 6 we have 10 such partitions: [1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2], [1, 1, 2, 2], [2, 2, 2], [1, 1, 1, 3], [3, 3], [1, 1, 4], [2, 4], [1, 5], [6].
From _Gus Wiseman_, Apr 18 2021: (Start)
The a(1) = 1 through a(8) = 16 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (41) (33) (61) (44)
(111) (31) (221) (42) (331) (62)
(211) (311) (51) (421) (71)
(1111) (2111) (222) (511) (422)
(11111) (411) (2221) (611)
(2211) (4111) (2222)
(3111) (22111) (3311)
(21111) (31111) (4211)
(111111) (211111) (5111)
(1111111) (22211)
(41111)
(221111)
(311111)
(2111111)
(11111111)
(End)
The Heinz numbers of these partitions are the complement of
A343337.
The complement is counted by
A343341.
The complement in the strict case is counted by
A343377.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A072233 counts partitions by sum and greatest part.
-
Table[If[n==0,1,Length[Select[IntegerPartitions[n],FreeQ[#,1]&&And@@IntegerQ/@(Max@@#/#)&]]],{n,0,30}] (* Gus Wiseman, Apr 18 2021 *)
-
seq(n)={Vec(1 + sum(m=1, n, my(u=divisors(m)); x^m/prod(i=1, #u, 1 - x^u[i] + O(x^(n-m+1)))))} \\ Andrew Howroyd, Apr 17 2021
A341450
Number of strict integer partitions of n that are empty or have smallest part not dividing all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 6, 3, 9, 9, 12, 12, 20, 18, 28, 27, 37, 42, 55, 51, 74, 80, 98, 105, 136, 137, 180, 189, 232, 255, 308, 320, 403, 434, 512, 551, 668, 706, 852, 915, 1067, 1170, 1370, 1453, 1722, 1860, 2145, 2332, 2701, 2899, 3355, 3626, 4144
Offset: 0
The a(0) = 1 through a(15) = 12 strict partitions (empty columns indicated by dots, 0 represents the empty partition, A..D = 10..13):
0 . . . . 32 . 43 53 54 64 65 75 76 86 87
52 72 73 74 543 85 95 96
432 532 83 732 94 A4 B4
92 A3 B3 D2
542 B2 653 654
632 643 743 753
652 752 762
742 932 843
832 5432 852
942
A32
6432
The Heinz numbers of these partitions are
A339562 (non-strict:
A342193).
The case with greatest part not divisible by all others is
A343379.
The case with greatest part divisible by all others is
A343380.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
-
Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
A338470
Number of integer partitions of n with no part dividing all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 3, 2, 5, 5, 13, 7, 23, 21, 33, 35, 65, 55, 104, 97, 151, 166, 252, 235, 377, 399, 549, 591, 846, 858, 1237, 1311, 1749, 1934, 2556, 2705, 3659, 3991, 5090, 5608, 7244, 7841, 10086, 11075, 13794, 15420, 19195, 21003, 26240, 29089, 35483
Offset: 0
The a(5) = 1 through a(12) = 7 partitions (empty column indicated by dot):
(32) . (43) (53) (54) (64) (65) (75)
(52) (332) (72) (73) (74) (543)
(322) (432) (433) (83) (552)
(522) (532) (92) (732)
(3222) (3322) (443) (4332)
(533) (5322)
(542) (33222)
(632)
(722)
(3332)
(4322)
(5222)
(32222)
The Heinz numbers of these partitions are
A342193.
The case with maximum part not divisible by all the others is
A343342.
The case with maximum part divisible by all the others is
A343344.
A000070 counts partitions with a selected part.
A001787 count normal multisets with a selected position.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A276024 counts positive subset sums.
-
Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&]],{n,0,30}]
(* Second program: *)
a[n_] := If[n == 0, 1, PartitionsP[n] - Sum[PartitionsP[d-1], {d, Divisors[n]}]];
a /@ Range[0, 50] (* Jean-François Alcover, May 09 2021, after Andrew Howroyd *)
-
a(n)={numbpart(n) - if(n, sumdiv(n, d, numbpart(d-1)))} \\ Andrew Howroyd, Mar 25 2021
A343341
Number of integer partitions of n with no part divisible by all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 4, 6, 11, 16, 28, 36, 58, 79, 111, 149, 209, 270, 368, 472, 618, 793, 1030, 1292, 1653, 2073, 2608, 3241, 4051, 4982, 6176, 7566, 9285, 11320, 13805, 16709, 20275, 24454, 29477, 35380, 42472, 50741, 60648, 72199, 85887, 101906, 120816
Offset: 0
The a(5) = 1 through a(10) = 16 partitions:
(32) (321) (43) (53) (54) (64)
(52) (332) (72) (73)
(322) (431) (432) (433)
(3211) (521) (522) (532)
(3221) (531) (541)
(32111) (3222) (721)
(3321) (3322)
(4311) (4321)
(5211) (5221)
(32211) (5311)
(321111) (32221)
(33211)
(43111)
(52111)
(322111)
(3211111)
The complement is counted by
A130689.
The Heinz numbers of these partitions are
A343337.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
Cf.
A066186,
A083710,
A083711,
A097986,
A098965,
A341450,
A343342,
A343345,
A343346,
A343381,
A343382.
-
Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
A342193
Numbers with no prime index dividing all the other prime indices.
Original entry on oeis.org
1, 15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 91, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 195, 201, 203, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 247, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 299
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 105: {2,3,4} 201: {2,19}
15: {2,3} 119: {4,7} 203: {4,10}
33: {2,5} 123: {2,13} 205: {3,13}
35: {3,4} 135: {2,2,2,3} 207: {2,2,9}
45: {2,2,3} 141: {2,15} 209: {5,8}
51: {2,7} 143: {5,6} 215: {3,14}
55: {3,5} 145: {3,10} 217: {4,11}
69: {2,9} 153: {2,2,7} 219: {2,21}
75: {2,3,3} 155: {3,11} 221: {6,7}
77: {4,5} 161: {4,9} 225: {2,2,3,3}
85: {3,7} 165: {2,3,5} 231: {2,4,5}
91: {4,6} 175: {3,3,4} 245: {3,4,4}
93: {2,11} 177: {2,17} 247: {6,8}
95: {3,8} 187: {5,7} 249: {2,23}
99: {2,2,5} 195: {2,3,6} 253: {5,9}
The case with maximum prime index not divisible by all others is
A343338.
The case with maximum prime index divisible by all others is
A343339.
A000070 counts partitions with a selected part.
A001221 counts distinct prime factors.
A299702 lists Heinz numbers of knapsack partitions.
A339564 counts factorizations with a selected factor.
Showing 1-10 of 36 results.
Comments