A138137 First differences of A006128.
1, 2, 3, 6, 8, 15, 19, 32, 42, 64, 83, 124, 157, 224, 288, 395, 502, 679, 854, 1132, 1422, 1847, 2307, 2968, 3677, 4671, 5772, 7251, 8908, 11110, 13572, 16792, 20439, 25096, 30414, 37138, 44798, 54389, 65386, 78959, 94558, 113687, 135646, 162375, 193133
Offset: 1
Examples
From _Omar E. Pol_, Feb 19 2012: (Start) Illustration of initial terms (n = 1..6) as sums of the first columns from the last sections of the first six natural numbers (or from the first six sections of 6): . 6 . 3+3 . 4+2 . 2+2+2 . 5 1 . 3+2 1 . 4 1 1 . 2+2 1 1 . 3 1 1 1 . 2 1 1 1 1 . 1 1 1 1 1 1 . --- ----- ------- --------- ----------- -------------- . 1, 2, 3, 6, 8, 15, ... Also, we can see that the sequence gives the number of parts in each section. For the number of odd/even parts (and more) see A207031, A207032 and also A206563. (End) From _Omar E. Pol_, Aug 16 2013: (Start) The geometric model looks like this: . _ _ _ _ _ _ . |_ _ _ _ _ _| . |_ _ _|_ _ _| . |_ _ _ _|_ _| . _ _ _ _ _ |_ _|_ _|_ _| . |_ _ _ _ _| |_| . _ _ _ _ |_ _ _|_ _| |_| . |_ _ _ _| |_| |_| . _ _ _ |_ _|_ _| |_| |_| . _ _ |_ _ _| |_| |_| |_| . _ |_ _| |_| |_| |_| |_| . |_| |_| |_| |_| |_| |_| . . 1 2 3 6 8 15 . (End) On the other hand for n = 6 the 6th row of triangle A336811 is [6, 4, 3, 2, 2, 1, 1] and the divisors of these terms are [1, 2, 3, 6], [1, 2, 4], [1, 3], [1, 2], [1, 2], [1], [1]. There are 15 divisors so a(6) = 15. - _Omar E. Pol_, Jul 27 2021
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; local f, g; if n=0 then [1, 0] elif i<1 then [0, 0] elif i>n then b(n, i-1) else f:= b(n, i-1); g:= b(n-i, i); [f[1]+g[1], f[2]+g[2] +g[1]] fi end: a:= n-> b(n, n)[2] -b(n-1, n-1)[2]: seq(a(n), n=1..50); # Alois P. Heinz, Feb 19 2012
-
Mathematica
b[n_, i_] := b[n, i] = Module[{f, g}, Which[n == 0, {1, 0}, i<1, {0, 0}, i>n, b[n, i-1], True, f = b[n, i-1]; g = b[n-i, i]; {f[[1]]+g[[1]], f[[2]]+g[[2]]+g[[1]]}]]; a[n_] := b[n, n][[2]]-b[n-1, n-1][[2]]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Mar 03 2014, after Alois P. Heinz *) Table[PartitionsP[n - 1] + Length@Flatten@Select[IntegerPartitions[n], FreeQ[#, 1] &], {n, 1, 45}] (* Robert Price, May 01 2020 *)
Formula
a(n) ~ exp(Pi*sqrt(2*n/3)) * (2*gamma + log(6*n/Pi^2)) / (8*sqrt(3)*n), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 21 2016
G.f.: Sum_{i>=1} i*x^i * Product_{j=2..i} 1/(1 - x^j). - Ilya Gutkovskiy, Apr 04 2017
Comments