A135010
Triangle read by rows in which row n lists A000041(n-1) 1's followed by the list of juxtaposed lexicographically ordered partitions of n that do not contain 1 as a part.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 5, 3, 4, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4, 2, 3, 3, 2, 6, 3, 5, 4, 4, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
[1];
[1],[2];
[1],[1],[3];
[1],[1],[1],[2,2],[4];
[1],[1],[1],[1],[1],[2,3],[5];
[1],[1],[1],[1],[1],[1],[1],[2,2,2],[2,4],[3,3],[6];
...
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6 in three ways. Note that before the dissection, the set of partitions was in the ordering mentioned in A026791. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
---------------------------------------------------------
n j Diagram Parts Parts
---------------------------------------------------------
. _
1 1 |_| 1; 1;
. _
2 1 | |_ 1, 1,
2 2 |_ _| 2; 2;
. _
3 1 | | 1, 1,
3 2 | |_ _ 1, 1,
3 3 |_ _ _| 3; 3;
. _
4 1 | | 1, 1,
4 2 | | 1, 1,
4 3 | |_ _ _ 1, 1,
4 4 | |_ _| 2,2, 2,2,
4 5 |_ _ _ _| 4; 4;
. _
5 1 | | 1, 1,
5 2 | | 1, 1,
5 3 | | 1, 1,
5 4 | | 1, 1,
5 5 | |_ _ _ _ 1, 1,
5 6 | |_ _ _| 2,3, 2,3,
5 7 |_ _ _ _ _| 5; 5;
. _
6 1 | | 1, 1,
6 2 | | 1, 1,
6 3 | | 1, 1,
6 4 | | 1, 1,
6 5 | | 1, 1,
6 6 | | 1, 1,
6 7 | |_ _ _ _ _ 1, 1,
6 8 | | |_ _| 2,2,2, 2,2,2,
6 9 | |_ _ _ _| 2,4, 2,4,
6 10 | |_ _ _| 3,3, 3,3,
6 11 |_ _ _ _ _ _| 6; 6;
...
(End)
Cf.
A000041,
A026791,
A138121,
A141285,
A182703,
A187219,
A193870,
A194446,
A206437,
A207031,
A207383,
A207379,
A211009.
-
with(combinat):
T:= proc(m) local b, ll;
b:= proc(n, i, l)
if n=0 then ll:=ll, l[]
else seq(b(n-j, j, [l[], j]), j=i..n)
fi
end;
ll:= NULL; b(m, 2, []); [1$numbpart(m-1)][], ll
end:
seq(T(n), n=1..10); # Alois P. Heinz, Feb 19 2012
-
less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[ Array[1 &, {PartitionsP[n - 1]}], Sort[ Reverse /@ Select[ IntegerPartitions[n], FreeQ[#, 1] &], less] ] // Flatten; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 14 2013 *)
Table[Reverse@ConstantArray[{1}, PartitionsP[n - 1]]~Join~
DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], {n, 1, 9}] // Flatten (* Robert Price, May 12 2020 *)
A138121
Triangle read by rows in which row n lists the partitions of n that do not contain 1 as a part in juxtaposed reverse-lexicographical order followed by A000041(n-1) 1's.
Original entry on oeis.org
1, 2, 1, 3, 1, 1, 4, 2, 2, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 4, 5, 3, 6, 2, 3, 3, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 5, 4, 6, 3, 3, 3, 3, 7, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2
Offset: 1
Triangle begins:
[1];
[2],[1];
[3],[1],[1];
[4],[2,2],[1],[1],[1];
[5],[3,2],[1],[1],[1],[1],[1];
[6],[3,3],[4,2],[2,2,2],[1],[1],[1],[1],[1],[1],[1];
[7],[4,3],[5,2],[3,2,2],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1];
...
The illustration of the three views of the section model of partitions (version "tree" with seven sections) shows the connection between several sequences.
---------------------------------------------------------
Partitions A194805 Table 1.0
. of 7 p(n) A194551 A135010
---------------------------------------------------------
7 15 7 7 . . . . . .
4+3 4 4 . . . 3 . .
5+2 5 5 . . . . 2 .
3+2+2 3 3 . . 2 . 2 .
6+1 11 6 1 6 . . . . . 1
3+3+1 3 1 3 . . 3 . . 1
4+2+1 4 1 4 . . . 2 . 1
2+2+2+1 2 1 2 . 2 . 2 . 1
5+1+1 7 1 5 5 . . . . 1 1
3+2+1+1 1 3 3 . . 2 . 1 1
4+1+1+1 5 4 1 4 . . . 1 1 1
2+2+1+1+1 2 1 2 . 2 . 1 1 1
3+1+1+1+1 3 1 3 3 . . 1 1 1 1
2+1+1+1+1+1 2 2 1 2 . 1 1 1 1 1
1+1+1+1+1+1+1 1 1 1 1 1 1 1 1 1
. 1 ---------------
. *<------- A000041 -------> 1 1 2 3 5 7 11
. A182712 -------> 1 0 2 1 4 3
. A182713 -------> 1 0 1 2 2
. A182714 -------> 1 0 1 1
. 1 0 1
. A141285 A182703 1 0
. A182730 A182731 1
---------------------------------------------------------
. A138137 --> 1 2 3 6 9 15..
---------------------------------------------------------
. A182746 <--- 4 . 2 1 0 1 2 . 4 ---> A182747
---------------------------------------------------------
.
. A182732 <--- 6 3 4 2 1 3 5 4 7 ---> A182733
. . . . . 1 . . . .
. . . . 2 1 . . . .
. . 3 . . 1 2 . . .
. Table 2.0 . . 2 2 1 . . 3 . Table 2.1
. . . . . 1 2 2 . .
. 1 . . . .
.
. A182982 A182742 A194803 A182983 A182743
. A182992 A182994 A194804 A182993 A182995
---------------------------------------------------------
.
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6. Note that before the dissection the set of partitions was in the ordering mentioned in A026792. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
Illustration of initial terms:
---------------------------------------
n j Diagram Parts
---------------------------------------
. _
1 1 |_| 1;
. _ _
2 1 |_ | 2,
2 2 |_| . 1;
. _ _ _
3 1 |_ _ | 3,
3 2 | | . 1,
3 3 |_| . . 1;
. _ _ _ _
4 1 |_ _ | 4,
4 2 |_ _|_ | 2, 2,
4 3 | | . 1,
4 4 | | . . 1,
4 5 |_| . . . 1;
. _ _ _ _ _
5 1 |_ _ _ | 5,
5 2 |_ _ _|_ | 3, 2,
5 3 | | . 1,
5 4 | | . . 1,
5 5 | | . . 1,
5 6 | | . . . 1,
5 7 |_| . . . . 1;
. _ _ _ _ _ _
6 1 |_ _ _ | 6,
6 2 |_ _ _|_ | 3, 3,
6 3 |_ _ | | 4, 2,
6 4 |_ _|_ _|_ | 2, 2, 2,
6 5 | | . 1,
6 6 | | . . 1,
6 7 | | . . 1,
6 8 | | . . . 1,
6 9 | | . . . 1,
6 10 | | . . . . 1,
6 11 |_| . . . . . 1;
...
(End)
-
less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[Array[1 &, {PartitionsP[n - 1]}], Sort[Reverse /@ Select[IntegerPartitions[n], FreeQ[#, 1] &], less]] // Flatten // Reverse; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 15 2013 *)
Table[Reverse/@Reverse@DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x]!=1]], x_ /; x==0, 2]~Join~ConstantArray[{1}, PartitionsP[n - 1]], {n, 1, 9}] // Flatten (* Robert Price, May 11 2020 *)
A182703
Triangle read by rows: T(n,k) = number of occurrences of k in the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 5, 1, 1, 0, 1, 7, 4, 2, 1, 0, 1, 11, 3, 2, 1, 1, 0, 1, 15, 8, 3, 3, 1, 1, 0, 1, 22, 7, 6, 2, 2, 1, 1, 0, 1, 30, 15, 6, 5, 3, 2, 1, 1, 0, 1, 42, 15, 10, 5, 4, 2, 2, 1, 1, 0, 1, 56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1
Offset: 1
Illustration of three arrangements of the last section of the set of partitions of 7, or more generally the 7th section of the set of partitions of any integer >= 7:
. _ _ _ _ _ _ _
. (7) (7) |_ _ _ _ |
. (4+3) (4+3) |_ _ _ _|_ |
. (5+2) (5+2) |_ _ _ | |
. (3+2+2) (3+2+2) |_ _ _|_ _|_ |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) | |
. (1) (1) |_|
. ----------------
. 19,8,5,3,2,1,1 --> Row 7 of triangle A207031.
. |/|/|/|/|/|/|
. 11,3,2,1,1,0,1 --> Row 7 of this triangle.
.
Note that the "head" of the last section is formed by the partitions of 7 that do not contain 1 as a part. The "tail" is formed by A000041(7-1) parts of size 1. The number of rows (or zones) is A000041(7) = 15. The last section of the set of partitions of 7 contains eleven 1's, three 2's, two 3's, one 4, one 5, there are no 6's and it contains one 7. So, for k = 1..7, row 7 gives: 11, 3, 2, 1, 1, 0, 1.
Triangle begins:
1;
1, 1;
2, 0, 1;
3, 2, 0, 1;
5, 1, 1, 0, 1;
7, 4, 2, 1, 0, 1;
11, 3, 2, 1, 1, 0, 1;
15, 8, 3, 3, 1, 1, 0, 1;
22, 7, 6, 2, 2, 1, 1, 0, 1;
30, 15, 6, 5, 3, 2, 1, 1, 0, 1;
42, 15, 10, 5, 4, 2, 2, 1, 1, 0, 1;
56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1;
...
-
p:= (f, g)-> zip((x, y)-> x+y, f, g, 0):
b:= proc(n,i) option remember; local g;
if n=0 then [1]
elif n<2 or i<2 then [0]
else g:= `if`(i>n, [0], b(n-i, i));
p(p([0$j=2..i, g[1]], b(n, i-1)), g)
fi
end:
h:= proc(n) option remember;
`if`(n=0, 1, b(n, n)[1]+h(n-1))
end:
T:= proc(n) h(n-1), b(n, n)[2..n][] end:
seq(T(n), n=1..20); # Alois P. Heinz, Feb 19 2012
-
p[f_, g_] := Plus @@ PadRight[{f, g}]; b[n_, i_] := b[n, i] = Module[{g}, Which[n == 0, {1}, n<2 || i<2, {0}, True, g = If [i>n, {0}, b[n-i, i]]; p[p[Append[Array[0&, i-1], g[[1]]], b[n, i-1]], g]]]; h[n_] := h[n] = If[n == 0, 1, b[n, n][[1]] + h[n-1]]; t[n_] := {h[n-1], Sequence @@ b[n, n][[2 ;; n]]}; Table[t[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 16 2014, after Alois P. Heinz's Maple code *)
Table[{PartitionsP[n-1]}~Join~Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], k], {k,2,n}], {n,1,12}] // Flatten (* Robert Price, May 15 2020 *)
A141285
Largest part of the n-th partition of j in the list of colexicographically ordered partitions of j, if 1 <= n <= A000041(j).
Original entry on oeis.org
1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 3, 5, 4, 7, 3, 6, 5, 9, 2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11, 2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 6, 5, 9, 4, 8, 7, 6, 12
Offset: 1
Written as a triangle T(j,k) the sequence begins:
1;
2;
3;
2, 4;
3, 5;
2, 4, 3, 6;
3, 5, 4, 7;
2, 4, 3, 6, 5, 4, 8;
3, 5, 4, 7, 3, 6, 5, 9;
2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10;
3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11;
...
------------------------------------------
n A000041 a(n)
------------------------------------------
1 = p(1) 1
2 = p(2) 2 .
3 = p(3) . 3
4 2 .
5 = p(4) 4 .
6 . 3
7 = p(5) . 5
8 2 .
9 4 .
10 3 .
11 = p(6) 6 .
12 . 3
13 . 5
14 . 4
15 = p(7) . 7
...
From _Omar E. Pol_, Aug 22 2013: (Start)
Illustration of initial terms (n = 1..11) in three ways: as the largest parts of the partitions of 6 (see A026792), also as the largest parts of the regions of the diagram, also as the diagonal of triangle. By definition of "region" the largest part of the n-th region is also the largest part of the n-th partition (see below):
--------------------------------------------------------
. Diagram Triangle in which
Partitions of regions rows are partitions
of 6 and partitions and columns are regions
--------------------------------------------------------
. _ _ _ _ _ _
6 _ _ _ | 6
3+3 _ _ _|_ | 3 3
4+2 _ _ | | 4 2
2+2+2 _ _|_ _|_ | 2 2 2
5+1 _ _ _ | | 5 1
3+2+1 _ _ _|_ | | 3 1 1
4+1+1 _ _ | | | 4 1 1
2+2+1+1 _ _|_ | | | 2 2 1 1
3+1+1+1 _ _ | | | | 3 1 1 1
2+1+1+1+1 _ | | | | | 2 1 1 1 1
1+1+1+1+1+1 | | | | | | 1 1 1 1 1 1
...
The equivalent sequence for compositions is A001511. Explanation: for the positive integer j the diagram of regions of the set of compositions of j has 2^(j-1) regions. The largest part of the n-th region is A001511(n). The number of parts is A006519(n). On the other hand the diagram of regions of the set of partitions of j has A000041(j) regions. The largest part of the n-th region is a(n) = A001511(A228354(n)). The number of parts is A194446(n). Both diagrams have j sections. The diagram for partitions can be interpreted as one of the three views of a three dimensional diagram of compositions in which the rows of partitions are in orthogonal direction to the rest. For the first five sections of the diagrams see below:
--------------------------------------------------------
. Diagram Diagram
. of regions of regions
. and compositions and partitions
---------------------------------------------------------
. j = 1 2 3 4 5 j = 1 2 3 4 5
---------------------------------------------------------
n A001511 A228354 a(n)
---------------------------------------------------------
1 1 _| | | | | ............ 1 1 _| | | | |
2 2 _ _| | | | ............ 2 2 _ _| | | |
3 1 _| | | | ......... 4 3 _ _ _| | |
4 3 _ _ _| | | ../ ....... 6 2 _ _| | |
5 1 _| | | | / ....... 8 4 _ _ _ _| |
6 2 _ _| | | ../ / .... 12 3 _ _ _| |
7 1 _| | | / / . 16 5 _ _ _ _ _|
8 4 _ _ _ _| | ../ / /
9 1 _| | | | / /
10 2 _ _| | | / /
11 1 _| | | / /
12 3 _ _ _| | ../ /
13 1 _| | | /
14 2 _ _| | /
15 1 _| | /
16 5 _ _ _ _ _| ../
...
Also we can draw an infinite Dyck path in which the n-th odd-indexed line segment has a(n) up-steps and the n-th even-indexed line segment has A194446(n) down-steps. Note that the height of the n-th largest peak between two successive valleys at height 0 is also the partition number A000041(n). See below:
. 5
. /\ 3
. 4 / \ 4 /\
. /\ / \ /\ /
. 3 / \ 3 / \ / \/
. 2 /\ 2 / \ /\/ \ 2 /
. 1 /\ / \ /\/ \ / \ /\/
. /\/ \/ \/ \/ \/
.
.(End)
Cf.
A000041,
A135010,
A182730,
A182731,
A182732,
A182733,
A182982,
A182983,
A182703,
A193870,
A194446,
A194447,
A194550,
A206437,
A210979,
A210980,
A211978,
A220517,
A225600,
A225610.
-
Last/@DeleteCases[DeleteCases[Sort@PadRight[Reverse/@IntegerPartitions[13]], x_ /; x == 0, 2], {}] (* updated _Robert Price, May 15 2020 *)
Better definition and edited by
Omar E. Pol, Oct 17 2013
A045623
Number of 1's in all compositions of n+1.
Original entry on oeis.org
1, 2, 5, 12, 28, 64, 144, 320, 704, 1536, 3328, 7168, 15360, 32768, 69632, 147456, 311296, 655360, 1376256, 2883584, 6029312, 12582912, 26214400, 54525952, 113246208, 234881024, 486539264, 1006632960, 2080374784, 4294967296, 8858370048, 18253611008, 37580963840
Offset: 0
E.g. a(2)=5 because in the compositions of 3, namely 3,2+1,1+2,1+1+1, we have five 1's altogether.
There are a(3)=12 compositions of 3 into 2 sorts of parts where all parts of the first sort precede all parts of the second sort. Here p:s stands for "part p of sort s":
01: [ 1:0 1:0 1:0 ]
02: [ 1:0 1:0 1:1 ]
03: [ 1:0 1:1 1:1 ]
04: [ 1:0 2:0 ]
05: [ 1:0 2:1 ]
06: [ 1:1 1:1 1:1 ]
07: [ 1:1 2:1 ]
08: [ 2:0 1:0 ]
09: [ 2:0 1:1 ]
10: [ 2:1 1:1 ]
11: [ 3:0 ]
12: [ 3:1 ]
- _Joerg Arndt_, Apr 28 2013
For the compositions of 6, the total number of runs of parts of size 2 is a(6-2) - a(6-2*2) = 28 - 5 = 23, enumerated as follows (with the runs of 2 enclosed in []): 4,[2]; [2],4; [2],3,1; [2],1,3; 3,[2],1; 1,[2],3; 3,1,[2]; 1,3,[2]; [2,2,2]; [2,2],1,1; 1,[2,2],1; 1,1,[2,2]; [2],1,[2],1; 1,[2],1,[2]; [2],1,1,[2]; [2],1,1,1,1; 1,[2],1,1,1; 1,1,[2],1,1; 1,1,1,[2],1; and 1,1,1,1[2]. - _Gregory L. Simay_, Feb 17 2018
There are a(3)=12 triwords of length 3: (0,0,0), (0,0,2), (0,2,0), (0,2,2), (1,0,0), (1,0,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2). - _Henri Mühle_, Mar 08 2021
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Marco Abrate, Stefano Barbero, Umberto Cerruti and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", Discrete Math., Vol. 335 (2014), pp. 1-7. MR3248794.
- Marco Abrate, Stefano Barbero, Umberto Cerruti and Nadir Murru, Colored compositions, Invert operator and elegant compositions with the "black tie", arXiv:1409.6454 [math.NT], 2014.
- Ron M. Adin and Yuval Roichman, Matrices, Characters and Descents, arXiv:1301.1675 [math.CO], 2013-2014; see p.10.
- Félix Balado and Guénolé C. M. Silvestre, Runs of Ones in Binary Strings, arXiv:2302.11532 [math.CO], 2023. See pp. 6-7.
- Freddy Cachazo and Nick Early, Planar Kinematics: Cyclic Fixed Points, Mirror Superpotential, k-Dimensional Catalan Numbers, and Root Polytopes, arXiv:2010.09708 [math.CO], 2020.
- Camille Combe, A geometric and combinatorial exploration of Hochschild lattices, arXiv:2007.00048 [math.CO], 2020.
- Éva Czabarka, Rigoberto Flórez, Leandro Junes and José L. Ramírez, Enumerations of peaks and valleys on non-decreasing Dyck paths, Discrete Math., Vol. 341, No. 10 (2018), pp. 2789-2807. See p. 2798.
- Michael Dairyko, Lara Pudwell, Samantha Tyner and Casey Wynn, Non-contiguous pattern avoidance in binary trees. Electron. J. Combin., Vol. 19, No. 3 (2012), Paper 22, 21 pp. MR2967227. - From _N. J. A. Sloane_, Feb 01 2013
- Robert Davis and Greg Simay, Further Combinatorics and Applications of Two-Toned Tilings, arXiv:2001.11089 [math.CO], 2020.
- Frank Ellermann, Illustration of binomial transforms.
- Nickolas Hein and Jia Huang, Variations of the Catalan numbers from some nonassociative binary operations, arXiv:1807.04623 [math.CO], 2018.
- V. E. Hoggatt, Jr., Letters to N. J. A. Sloane, 1974-1975.
- Milan Janjic, Two Enumerative Functions.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Milan Janjic and Boris Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq., Vol. 17 (2014), Article 14.3.5.
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, arXiv:1302.2274 [math.CO], 2013.
- Sergey Kitaev, Jeffrey Remmel and Mark Tiefenbruck, Quadrant Marked Mesh Patterns in 132-Avoiding Permutations II, Electronic Journal of Combinatorial Number Theory, Vol. 15 (2015), Article A16.
- Henri Mühle Hochschild lattices and shuffle lattices, arXiv:2008.13247 [math.CO], 2020.
- Koushik Sinha and Bhabani P. Sinha, On the distribution of runs of ones in binary strings, Computers & Mathematics with Applications, Vol. 58, No. 9 (2009), pp. 1816-1829.
- Lin Weng and Don Zagier, Higher-rank zeta functions and SLn-zeta functions for curves, PNAS 117 (12), 2020.
- Index entries for linear recurrences with constant coefficients, signature (4,-4).
-
a:=[2,5];; for n in [3..40] do a[n]:=4*a[n-1]-4*a[n-2]; od; Concatenation([1],a); # Muniru A Asiru, Oct 16 2018
-
a045623 n = a045623_list !! n
a045623_list = tail $ f a011782_list [] where
f (u:us) vs = sum (zipWith (*) vs $ reverse ws) : f us ws
where ws = u : vs
-- Reinhard Zumkeller, Jul 21 2013
-
seq(ceil(1/4*2^n*(n+3)),n=0..50);
-
Table[If[n==0, 1, 2^(n-2)(n+3)], {n, 0, 29}] (* Robert G. Wilson v, Jun 27 2005 *)
CoefficientList[Series[(1 -2x +x^2)/(1-2x)^2, {x, 0, 30}], x] (* or *)
LinearRecurrence[{4, -4}, {1, 2, 5}, 31] (* Robert G. Wilson v, Feb 18 2018 *)
-
a(n):=sum(((2*m+2)*n-2*m^2+1)*binomial(2*n+2,2*m+1),m,0,n)/((4*n+2)*2^n); /* Vladimir Kruchinin, Nov 01 2020 */
-
a(n)=if(n<1,n==0,(n+3)*2^(n-2))
A194446
Number of parts in the n-th region of the set of partitions of j, if 1<=n<=A000041(j).
Original entry on oeis.org
1, 2, 3, 1, 5, 1, 7, 1, 2, 1, 11, 1, 2, 1, 15, 1, 2, 1, 4, 1, 1, 22, 1, 2, 1, 4, 1, 2, 1, 30, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 42, 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 56, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 12, 1, 2, 1, 4, 1, 2, 1, 1, 77, 1, 2, 1
Offset: 1
Written as an irregular triangle the sequence begins:
1;
2;
3;
1, 5;
1, 7;
1, 2, 1, 11;
1, 2, 1, 15;
1, 2, 1, 4, 1, 1, 22;
1, 2, 1, 4, 1, 2, 1, 30;
1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 42;
1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 56;
1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 12, 1, 2, 1, 4, 1, 2, 1, 1, 77;
...
From _Omar E. Pol_, Aug 18 2013: (Start)
Illustration of initial terms (first seven regions):
. _ _ _ _ _
. _ _ _ |_ _ _ _ _|
. _ _ _ _ |_ _ _| |_ _|
. _ _ |_ _ _ _| |_|
. _ _ _ |_ _| |_ _| |_|
. _ _ |_ _ _| |_| |_|
. _ |_ _| |_| |_| |_|
. |_| |_| |_| |_| |_|
.
. 1 2 3 1 5 1 7
.
The next figure shows a minimalist diagram of the first seven regions. The n-th horizontal line segment has length A141285(n). a(n) is the length of the n-th vertical line segment, which is the vertical line segment ending in row n (see also A225610).
. _ _ _ _ _
. 7 _ _ _ |
. 6 _ _ _|_ |
. 5 _ _ | |
. 4 _ _|_ | |
. 3 _ _ | | |
. 2 _ | | | |
. 1 | | | | |
.
. 1 2 3 4 5
.
Illustration of initial terms from an infinite Dyck path in which the length of the n-th ascendent line segment is A141285(n). a(n) is the length of the n-th descendent line segment.
. /\
. / \
. /\ / \
. / \ / \
. /\ / \ /\/ \
. /\ / \ /\/ \ / 1 \
. /\/ \/ \/ 1 \/ \
. 1 2 3 5 7
.
(End)
Cf.
A002865,
A006128,
A135010,
A138121,
A186114,
A186412,
A193870,
A194436,
A194437,
A194438,
A194439,
A194447.
-
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
A194446 = {}; l = {};
For[j = 1, j <= 30, j++,
mx = Max@lex[j][[j]]; AppendTo[l, mx];
For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
AppendTo[A194446, j - i];
];
A194446 (* Robert Price, Jul 25 2020 *)
A336811
Irregular triangle read by rows T(n,k) in which the length of row n equals the partition number A000041(n-1) and every column k gives the positive integers A000027, with n >= 1 and k >= 1.
Original entry on oeis.org
1, 2, 3, 1, 4, 2, 1, 5, 3, 2, 1, 1, 6, 4, 3, 2, 2, 1, 1, 7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
1;
2;
3, 1;
4, 2, 1;
5, 3, 2, 1, 1;
6, 4, 3, 2, 2, 1, 1;
7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1;
8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1;
9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
...
For n = 6, by definition the length of row 6 is A000041(6-1) = A000041(5) = 7, so the row 6 of triangle has seven terms. Since every column lists the positive integers A000027 so the row 6 is [6, 4, 3, 2, 2, 1, 1].
Then we have that the divisors of the numbers of the 6th row are:
.
6th row of the triangle ----------> 6 4 3 2 2 1 1
3 2 1 1 1
2 1
1
.
There are seven 1's, four 2's, two 3's, one 4 and one 6.
In total there are 7 + 4 + 2 + 1 + 1 = 15 divisors.
On the other hand the last section of the set of the partitions of 6 can be represented in several ways, five of them as shown below:
._ _ _ _ _ _
|_ _ _ | 6 6 6 6
|_ _ _|_ | 3 3 3 3 3 3 3 3
|_ _ | | 4 2 4 2 4 2 4 2
|_ _|_ _|_ | 2 2 2 2 2 2 2 2 2 2 2 2
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
|_| 1 1 1 1
.
Figure 1. Figure 2. Figure 3. Figure 4. Figure 5.
.
In every figure there are seven 1's, four 2's, two 3's, one 4 and one 6, as shown also the 6th row of A182703.
In total there are 7 + 4 + 2 + 1 + 1 = A138137(6) = 15 parts in every figure.
Figure 5 is an arrangement that shows the correspondence between divisors and parts since the columns give the divisors of the terms of 6th row of triangle.
Finally we can see that all divisors of all numbers in the 6th row of the triangle are the same positive integers as all parts in the last section of the set of the partitions of 6.
Example edited by _Omar E. Pol_, Aug 10 2021
Cf.
A000007,
A000041,
A027750,
A028310,
A002865,
A133735,
A135010,
A138121,
A138137,
A182703,
A187219,
A207378,
A221529,
A336812,
A339278,
A340035,
A340061,
A346741.
-
A336811[row_]:=Flatten[Table[ConstantArray[row-m,PartitionsP[m]-PartitionsP[m-1]],{m,0,row-1}]];
Array[A336811,10] (* Generates 10 rows *) (* Paolo Xausa, Feb 10 2023 *)
-
f(n) = numbpart(n-1);
T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (n)); my(s=0); while (k <= f(n-1), s++; n--;); 1+s;}
tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n,k), ", ");); print;);} \\ Michel Marcus, Jan 13 2021
A221529
Triangle read by rows: T(n,k) = A000203(k)*A000041(n-k), 1 <= k <= n.
Original entry on oeis.org
1, 1, 3, 2, 3, 4, 3, 6, 4, 7, 5, 9, 8, 7, 6, 7, 15, 12, 14, 6, 12, 11, 21, 20, 21, 12, 12, 8, 15, 33, 28, 35, 18, 24, 8, 15, 22, 45, 44, 49, 30, 36, 16, 15, 13, 30, 66, 60, 77, 42, 60, 24, 30, 13, 18, 42, 90, 88, 105, 66, 84, 40, 45, 26, 18, 12, 56, 126, 120, 154, 90, 132, 56, 75, 39, 36, 12, 28
Offset: 1
Triangle begins:
------------------------------------------------------
n| k 1 2 3 4 5 6 7 8 9 10
------------------------------------------------------
1| 1;
2| 1, 3;
3| 2, 3, 4;
4| 3, 6, 4, 7;
5| 5, 9, 8, 7, 6;
6| 7, 15, 12, 14, 6, 12;
7| 11, 21, 20, 21, 12, 12, 8;
8| 15, 33, 28, 35, 18, 24, 8, 15;
9| 22, 45, 44, 49, 30, 36, 16, 15, 13;
10| 30, 66, 60, 77, 42, 60, 24, 30, 13, 18;
...
The sum of row 10 is [30 + 66 + 60 + 77 + 42 + 60 + 24 + 30 + 13 + 18] = A066186(10) = 420.
.
For n = 10 the calculation of the row 10 is as follows:
k A000203 T(10,k)
1 1 * 30 = 30
2 3 * 22 = 66
3 4 * 15 = 60
4 7 * 11 = 77
5 6 * 7 = 42
6 12 * 5 = 60
7 8 * 3 = 24
8 15 * 2 = 30
9 13 * 1 = 13
10 18 * 1 = 18
A000041
.
From _Omar E. Pol_, Jul 13 2021: (Start)
For n = 10 we can see below three views of two associated polycubes called here "prism of partitions" and "tower". Both objects contain the same number of cubes (that property is valid for n >= 1).
_ _ _ _ _ _ _ _ _ _
42 |_ _ _ _ _ |
|_ _ _ _ _|_ |
|_ _ _ _ _ _|_ |
|_ _ _ _ | |
|_ _ _ _|_ _ _|_ |
|_ _ _ _ | |
|_ _ _ _|_ | |
|_ _ _ _ _|_ | |
|_ _ _ | | |
|_ _ _|_ | | |
|_ _ | | | |
|_ _|_ _|_ _|_ _|_ | _
30 |_ _ _ _ _ | | | | 30
|_ _ _ _ _|_ | | | |
|_ _ _ | | | | |
|_ _ _|_ _ _|_ | | | |
|_ _ _ _ | | | | |
|_ _ _ _|_ | | | | |
|_ _ _ | | | | | |
|_ _ _|_ _|_ _|_ | | _|_|
22 |_ _ _ _ | | | | | 22
|_ _ _ _|_ | | | | |
|_ _ _ _ _|_ | | | | |
|_ _ _ | | | | | |
|_ _ _|_ | | | | | |
|_ _ | | | | | | |
|_ _|_ _|_ _|_ | | | _|_ _|
15 |_ _ _ _ | | | | | | | 15
|_ _ _ _|_ | | | | | | |
|_ _ _ | | | | | | | |
|_ _ _|_ _|_ | | | | _|_|_ _|
11 |_ _ _ | | | | | | | | 11
|_ _ _|_ | | | | | | | |
|_ _ | | | | | | | | |
|_ _|_ _|_ | | | | | _| |_ _ _|
7 |_ _ _ | | | | | | | | | 7
|_ _ _|_ | | | | | | _|_ _|_ _ _|
5 |_ _ | | | | | | | | | | | 5
|_ _|_ | | | | | | | _| | |_ _ _ _|
3 |_ _ | | | | | | | | _|_ _|_|_ _ _ _| 3
2 |_ | | | | | | | | | _ _|_ _|_|_ _ _ _ _| 2
1 |_|_|_|_|_|_|_|_|_|_| |_ _|_|_|_ _ _ _ _ _| 1
.
Figure 1. Figure 2.
Front view of the Lateral view
prism of partitions. of the tower.
.
. _ _ _ _ _ _ _ _ _ _
| | | | | | | | |_| 1
| | | | | | |_|_ _| 2
| | | | |_|_ |_ _| 3
| | |_|_ |_ _ _| 4
| |_ _ |_ |_ _ _| 5
|_ _ |_ |_ _ _ _| 6
|_ | |_ _ _ _| 7
|_ |_ _ _ _ _| 8
| | 9
|_ _ _ _ _ _| 10
.
Figure 3.
Top view
of the tower.
.
Figure 1 is a two-dimensional diagram of the partitions of 10 in colexicographic order (cf. A026792, A211992). The area of the diagram is 10*42 = A066186(10) = 420. Note that the diagram can be interpreted also as the front view of a right prism whose volume is 1*10*42 = 420 equaling the volume and the number of cubes of the tower that appears in the figures 2 and 3.
Note that the shape and the area of the lateral view of the tower are the same as the shape and the area where the 1's are located in the diagram of partitions. In this case the mentioned area equals A000070(10-1) = 97.
The connection between these two associated objects is a representation of the correspondence divisor/part described in A338156. See also A336812.
The sum of the volumes of both objects equals A220909.
For the connection with the table of A338156 see also A340035. (End)
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (rows 1..150 of triangle, flattened)
- T. J. Osler, A. Hassen and T. R. Chandrupatia, Surprising connections between partitions and divisors, The College Mathematics Journal, Vol. 38. No. 4, Sep. 2007, 278-287 (see p. 287).
- Omar E. Pol, Illustration of the prism, the tower and the 10th row of the triangle
Cf.
A000070,
A000203,
A026792,
A027293,
A135010,
A138137,
A176206,
A182703,
A220909,
A211992,
A221649,
A236104,
A237270,
A237271,
A237593,
A245092,
A245093,
A245095,
A245099,
A262626,
A336811,
A336812,
A338156,
A339278,
A340035,
A340583,
A340584,
A345023,
A346741.
-
nrows=12; Table[Table[DivisorSigma[1,k]PartitionsP[n-k],{k,n}],{n,nrows}] // Flatten (* Paolo Xausa, Jun 17 2022 *)
-
T(n,k)=sigma(k)*numbpart(n-k) \\ Charles R Greathouse IV, Feb 19 2013
A194447
Rank of the n-th region of the set of partitions of j, if 1<=n<=A000041(j).
Original entry on oeis.org
0, 0, 0, 1, -1, 2, -2, 1, 2, 2, -5, 2, 3, 3, -8, 1, 2, 2, 2, 4, 3, -14, 2, 3, 3, 3, 2, 4, 4, -21, 1, 2, 2, 2, 4, 3, 1, 3, 5, 5, 4, -32, 2, 3, 3, 3, 2, 4, 4, 1, 4, 3, 5, 6, 5, -45, 1, 2, 2, 2, 4, 3, 1, 3, 5, 5, 4, -2, 2, 4, 4, 5, 3, 6, 6, 5, -65
Offset: 1
In the triangle T(j,k) for j = 6 the number of regions in the last section of the set of partitions of 6 is equal to 4. The first region given by [2] has rank 2-1 = 1. The second region given by [4,2] has rank 4-2 = 2. The third region given by [3] has rank 3-1 = 2. The fourth region given by [6,3,2,2,1,1,1,1,1,1,1] has rank 6-11 = -5 (see below):
From _Omar E. Pol_, Aug 12 2013: (Start)
---------------------------------------------------------
. Regions Illustration of ranks of the regions
---------------------------------------------------------
. For J=6 k=1 k=2 k=3 k=4
. _ _ _ _ _ _ _ _ _ _ _ _
. |_ _ _ | _ _ _ . |
. |_ _ _|_ | _ _ _ _ * * .| . |
. |_ _ | | _ _ * * . | . |
. |_ _|_ _|_ | * .| .| . |
. | | . |
. | | .|
. | | *|
. | | *|
. | | *|
. | | *|
. |_| *|
.
So row 6 lists: 1 2 2 -5
(End)
Written as a triangle begins:
0;
0;
0;
1,-1;
2,-2;
1,2,2,-5;
2,3,3,-8;
1,2,2,2,4,3,-14;
2,3,3,3,2,4,4,-21;
1,2,2,2,4,3,1,3,5,5,4,-32;
2,3,3,3,2,4,4,1,4,3,5,6,5,-45;
1,2,2,2,4,3,1,3,5,5,4,-2,2,4,4,5,3,6,6,5,-65;
2,3,3,3,2,4,4,1,4,3,5,6,5,-3,3,5,5,4,5,4,7,7,6,-88;
Row j has length
A187219(j). The absolute value of the last term of row j is
A000094(j+1). Row sums give
A000004.
Cf.
A000041,
A002865,
A135010,
A138121,
A138137,
A138879,
A186114,
A186412,
A193870,
A194436,
A194437,
A194438,
A194439,
A194446,
A206437.
A207031
Triangle read by rows: T(n,k) = sum of all parts of the k-th column of the last section of the set of partitions of n.
Original entry on oeis.org
1, 2, 1, 3, 1, 1, 6, 3, 1, 1, 8, 3, 2, 1, 1, 15, 8, 4, 2, 1, 1, 19, 8, 5, 3, 2, 1, 1, 32, 17, 9, 6, 3, 2, 1, 1, 42, 20, 13, 7, 5, 3, 2, 1, 1, 64, 34, 19, 13, 8, 5, 3, 2, 1, 1, 83, 41, 26, 16, 11, 7, 5, 3, 2, 1, 1, 124, 68, 41, 27, 17, 12, 7, 5, 3, 2, 1, 1
Offset: 1
Illustration of initial terms. First six rows of triangle as sums of columns from the last sections of the first six natural numbers (or as sums of columns from the six sections of 6):
. 6
. 3 3
. 4 2
. 2 2 2
. 5 1
. 3 2 1
. 4 1 1
. 2 2 1 1
. 3 1 1 1
. 2 1 1 1 1
. 1 1 1 1 1 1
. --- --- ------- --------- ----------- --------------
A: 1, 2,1, 3,1,1, 6,3,1,1, 8,3,2,1,1, 15,8,4,2,1,1
. | |/| |/|/| |/|/|/| |/|/|/|/| |/|/|/|/|/|
B: 1, 1,1, 2,0,1, 3,2,0,1, 5,1,1,0,1, 7,4,2,1,0,1
.
A := initial terms of this triangle.
B := initial terms of triangle A182703.
.
Triangle begins:
1;
2, 1;
3, 1, 1;
6, 3, 1, 1;
8, 3, 2, 1, 1;
15, 8, 4, 2, 1, 1;
19, 8, 5, 3, 2, 1, 1;
32, 17, 9, 6, 3, 2, 1, 1;
42, 20, 13, 7, 5, 3, 2, 1, 1;
64, 34, 19, 13, 8, 5, 3, 2, 1, 1;
83, 41, 26, 16, 11, 7, 5, 3, 2, 1, 1;
124, 68, 41, 27, 17, 12, 7, 5, 3, 2, 1, 1;
Cf.
A000041,
A002865,
A006128,
A135010,
A138121,
A181187,
A182703,
A206562,
A206563,
A207032,
A207379,
A208476,
A210955,
A210956.
Showing 1-10 of 78 results.
Comments