cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 78 results. Next

A135010 Triangle read by rows in which row n lists A000041(n-1) 1's followed by the list of juxtaposed lexicographically ordered partitions of n that do not contain 1 as a part.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 4, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 3, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 5, 3, 4, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4, 2, 3, 3, 2, 6, 3, 5, 4, 4, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 17 2007, Mar 21 2008

Keywords

Comments

This is the original sequence of a large number of sequences connected with the section model of partitions.
Here "the n-th section of the set of partitions of any integer greater than or equal to n" (hence "the last section of the set of partitions of n") is defined to be the set formed by all parts that occur as a result of taking all partitions of n and then removing all parts of the partitions of n-1. For integers greater than 1 the structure of a section has two main areas: the head and tail. The head is formed by the partitions of n that do not contain 1 as a part. The tail is formed by A000041(n-1) partitions of 1. The set of partitions of n contains the sets of partitions of the previous numbers. The section model of partitions has several versions according with the ordering of the partitions or with the representation of the sections. In this sequence we use the ordering of A026791.
The section model of partitions can be interpreted as a table of partitions. See also A138121. - Omar E. Pol, Nov 18 2009
It appears that the versions of the model show an overlapping of sections and subsections of the numbers congruent to k mod m into parts >= m. For example:
First generation (the main table):
Table 1.0: Partitions of integers congruent to 0 mod 1 into parts >= 1.
Second generation:
Table 2.0: Partitions of integers congruent to 0 mod 2 into parts >= 2.
Table 2.1: Partitions of integers congruent to 1 mod 2 into parts >= 2.
Third generation:
Table 3.0: Partitions of integers congruent to 0 mod 3 into parts >= 3.
Table 3.1: Partitions of integers congruent to 1 mod 3 into parts >= 3.
Table 3.2: Partitions of integers congruent to 2 mod 3 into parts >= 3.
And so on.
Conjecture:
Let j and n be integers congruent to k mod m such that 0 <= k < m <= j < n. Let h=(n-j)/m. Consider only all partitions of n into parts >= m. Then remove every partition in which the parts of size m appears a number of times < h. Then remove h parts of size m in every partition. The rest are the partitions of j into parts >= m. (Note that in the section model, h is the number of sections or subsections removed), (Omar E. Pol, Dec 05 2010, Dec 06 2010).
Starting from the first row of triangle, it appears that the total numbers of parts of size k in k successive rows give the sequence A000041 (see A182703). - Omar E. Pol, Feb 22 2012
The last section of n contains A187219(n) regions (see A206437). - Omar E. Pol, Nov 04 2012

Examples

			Triangle begins:
  [1];
  [1],[2];
  [1],[1],[3];
  [1],[1],[1],[2,2],[4];
  [1],[1],[1],[1],[1],[2,3],[5];
  [1],[1],[1],[1],[1],[1],[1],[2,2,2],[2,4],[3,3],[6];
  ...
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6 in three ways. Note that before the dissection, the set of partitions was in the ordering mentioned in A026791. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
---------------------------------------------------------
n  j          Diagram          Parts           Parts
---------------------------------------------------------
.                   _
1  1               |_|                1;              1;
.                 _
2  1             | |_               1,              1,
2  2             |_ _|              2;                2;
.               _
3  1           | |                1,              1,
3  2           | |_ _             1,                1,
3  3           |_ _ _|            3;                  3;
.             _
4  1         | |                1,              1,
4  2         | |                1,                1,
4  3         | |_ _ _           1,                  1,
4  4         |   |_ _|          2,2,                2,2,
4  5         |_ _ _ _|          4;                    4;
.           _
5  1       | |                1,              1,
5  2       | |                1,                1,
5  3       | |                1,                  1,
5  4       | |                1,                  1,
5  5       | |_ _ _ _         1,                    1,
5  6       |   |_ _ _|        2,3,                  2,3,
5  7       |_ _ _ _ _|        5;                      5;
.         _
6  1     | |                1,              1,
6  2     | |                1,                1,
6  3     | |                1,                  1,
6  4     | |                1,                  1,
6  5     | |                1,                    1,
6  6     | |                1,                    1,
6  7     | |_ _ _ _ _       1,                      1,
6  8     |   |   |_ _|      2,2,2,                2,2,2,
6  9     |   |_ _ _ _|      2,4,                    2,4,
6  10    |     |_ _ _|      3,3,                    3,3,
6  11    |_ _ _ _ _ _|      6;                        6;
...
(End)
		

Crossrefs

Row n has length A138137(n).
Row sums give A138879.
Right border gives A000027.

Programs

  • Maple
    with(combinat):
    T:= proc(m) local b, ll;
          b:= proc(n, i, l)
                if n=0 then ll:=ll, l[]
              else seq(b(n-j, j, [l[], j]), j=i..n)
                fi
              end;
          ll:= NULL; b(m, 2, []); [1$numbpart(m-1)][], ll
        end:
    seq(T(n), n=1..10);  # Alois P. Heinz, Feb 19 2012
  • Mathematica
    less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[ Array[1 &, {PartitionsP[n - 1]}], Sort[ Reverse /@ Select[ IntegerPartitions[n], FreeQ[#, 1] &], less] ] // Flatten; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 14 2013 *)
    Table[Reverse@ConstantArray[{1}, PartitionsP[n - 1]]~Join~
    DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], {n, 1, 9}] // Flatten (* Robert Price, May 12 2020 *)

A138121 Triangle read by rows in which row n lists the partitions of n that do not contain 1 as a part in juxtaposed reverse-lexicographical order followed by A000041(n-1) 1's.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 2, 2, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 4, 5, 3, 6, 2, 3, 3, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 5, 4, 6, 3, 3, 3, 3, 7, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Mar 21 2008

Keywords

Comments

Mirror of triangle A135010.

Examples

			Triangle begins:
[1];
[2],[1];
[3],[1],[1];
[4],[2,2],[1],[1],[1];
[5],[3,2],[1],[1],[1],[1],[1];
[6],[3,3],[4,2],[2,2,2],[1],[1],[1],[1],[1],[1],[1];
[7],[4,3],[5,2],[3,2,2],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1];
...
The illustration of the three views of the section model of partitions (version "tree" with seven sections) shows the connection between several sequences.
---------------------------------------------------------
Partitions                A194805            Table 1.0
.  of 7       p(n)        A194551             A135010
---------------------------------------------------------
7              15                    7     7 . . . . . .
4+3                                4       4 . . . 3 . .
5+2                              5         5 . . . . 2 .
3+2+2                          3           3 . . 2 . 2 .
6+1            11    6       1             6 . . . . . 1
3+3+1                  3     1             3 . . 3 . . 1
4+2+1                    4   1             4 . . . 2 . 1
2+2+2+1                    2 1             2 . 2 . 2 . 1
5+1+1           7            1   5         5 . . . . 1 1
3+2+1+1                      1 3           3 . . 2 . 1 1
4+1+1+1         5        4   1             4 . . . 1 1 1
2+2+1+1+1                  2 1             2 . 2 . 1 1 1
3+1+1+1+1       3            1 3           3 . . 1 1 1 1
2+1+1+1+1+1     2          2 1             2 . 1 1 1 1 1
1+1+1+1+1+1+1   1            1             1 1 1 1 1 1 1
.               1                         ---------------
.               *<------- A000041 -------> 1 1 2 3 5 7 11
.                         A182712 ------->   1 0 2 1 4 3
.                         A182713 ------->     1 0 1 2 2
.                         A182714 ------->       1 0 1 1
.                                                  1 0 1
.                         A141285           A182703  1 0
.                    A182730   A182731                 1
---------------------------------------------------------
.                              A138137 --> 1 2 3 6 9 15..
---------------------------------------------------------
.       A182746 <--- 4 . 2 1 0 1 2 . 4 ---> A182747
---------------------------------------------------------
.
.       A182732 <--- 6 3 4 2 1 3 5 4 7 ---> A182733
.                    . . . . 1 . . . .
.                    . . . 2 1 . . . .
.                    . 3 . . 1 2 . . .
.      Table 2.0     . . 2 2 1 . . 3 .     Table 2.1
.                    . . . . 1 2 2 . .
.                            1 . . . .
.
.  A182982  A182742       A194803       A182983  A182743
.  A182992  A182994       A194804       A182993  A182995
---------------------------------------------------------
.
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6. Note that before the dissection the set of partitions was in the ordering mentioned in A026792. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
Illustration of initial terms:
---------------------------------------
n  j     Diagram          Parts
---------------------------------------
.         _
1  1     |_|              1;
.         _ _
2  1     |_  |            2,
2  2       |_|            .  1;
.         _ _ _
3  1     |_ _  |          3,
3  2         | |          .  1,
3  3         |_|          .  .  1;
.         _ _ _ _
4  1     |_ _    |        4,
4  2     |_ _|_  |        2, 2,
4  3           | |        .  1,
4  4           | |        .  .  1,
4  5           |_|        .  .  .  1;
.         _ _ _ _ _
5  1     |_ _ _    |      5,
5  2     |_ _ _|_  |      3, 2,
5  3             | |      .  1,
5  4             | |      .  .  1,
5  5             | |      .  .  1,
5  6             | |      .  .  .  1,
5  7             |_|      .  .  .  .  1;
.         _ _ _ _ _ _
6  1     |_ _ _      |    6,
6  2     |_ _ _|_    |    3, 3,
6  3     |_ _    |   |    4, 2,
6  4     |_ _|_ _|_  |    2, 2, 2,
6  5               | |    .  1,
6  6               | |    .  .  1,
6  7               | |    .  .  1,
6  8               | |    .  .  .  1,
6  9               | |    .  .  .  1,
6  10              | |    .  .  .  .  1,
6  11              |_|    .  .  .  .  .  1;
...
(End)
		

Crossrefs

Row n has length A138137(n).
Rows sums give A138879.

Programs

  • Mathematica
    less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[Array[1 &, {PartitionsP[n - 1]}], Sort[Reverse /@ Select[IntegerPartitions[n], FreeQ[#, 1] &], less]] // Flatten // Reverse; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 15 2013 *)
    Table[Reverse/@Reverse@DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x]!=1]], x_ /; x==0, 2]~Join~ConstantArray[{1}, PartitionsP[n - 1]], {n, 1, 9}]  // Flatten (* Robert Price, May 11 2020 *)

A182703 Triangle read by rows: T(n,k) = number of occurrences of k in the last section of the set of partitions of n.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 3, 2, 0, 1, 5, 1, 1, 0, 1, 7, 4, 2, 1, 0, 1, 11, 3, 2, 1, 1, 0, 1, 15, 8, 3, 3, 1, 1, 0, 1, 22, 7, 6, 2, 2, 1, 1, 0, 1, 30, 15, 6, 5, 3, 2, 1, 1, 0, 1, 42, 15, 10, 5, 4, 2, 2, 1, 1, 0, 1, 56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 28 2010

Keywords

Comments

For the definition of "section" of the set of partitions of n see A135010.
Also, column 1 gives the number of partitions of n-1. For k >= 2, row n lists the number of k's in all partitions of n that do not contain 1 as a part.
From Omar E. Pol, Feb 12 2012: (Start)
It appears that reversed rows converge to A002865.
It appears that row n is also the base of an isosceles triangle in which the column sums give the partition numbers A000041 in descending order starting with p(n-1) = A000041(n-1). Example for n = 7:
.
. 1,
. 1, 0, 1,
. 4, 2, 1, 0, 1,
11, 3, 2, 1, 1, 0, 1,
---------------------
11, 7, 5, 3, 2, 1, 1,
.
It appears that in row n starts an infinite trapezoid in which column sums always give the number of partitions of n-1. Example for n = 7:
.
11, 3, 2, 1, 1, 0, 1,
. 8, 3, 3, 1, 1, 0, 1,
. 6, 2, 2, 1, 1, 0, 1,
. 5, 3, 2, 1, 1, 0, 1,
. 4, 2, 2, 1, 1, 0, 1,
. 5, 2, 2, 1, 1, 0,...
. 4, 2, 2, 1, 1,...
. 4, 2, 2, 1,...
. 4, 2, 2,...
. 4, 2,...
. 4,...
.
The sum of any column is always p(7-1) = p(6) = A000041(6) = 11.
It appears that the first term of row n is one of the vertices of an infinite isosceles triangle in which column sums give the partition numbers A000041 in ascending order starting with p(n-1) = A000041(n-1). Example for n = 7:
11,
. 8,
. 7, 6,
. 6, 5,
. 10, 5, ...
. 10, ...
. 10, ...
-------------------
11, 15, 22, 30, ...
(End)
It appears that row n lists the first differences of the row n of triangle A207031 together with 1 (as the final term of row n). - Omar E. Pol, Feb 26 2012
More generally T(n,k) is the number of occurrences of k in the n-th section of the set of partitions of any integer >= n. - Omar E. Pol, Oct 21 2013

Examples

			Illustration of three arrangements of the last section of the set of partitions of 7, or more generally the 7th section of the set of partitions of any integer >= 7:
.                                        _ _ _ _ _ _ _
.     (7)                    (7)        |_ _ _ _      |
.     (4+3)                (4+3)        |_ _ _ _|_    |
.     (5+2)                (5+2)        |_ _ _    |   |
.     (3+2+2)            (3+2+2)        |_ _ _|_ _|_  |
.       (1)                  (1)                    | |
.         (1)                (1)                    | |
.         (1)                (1)                    | |
.           (1)              (1)                    | |
.         (1)                (1)                    | |
.           (1)              (1)                    | |
.           (1)              (1)                    | |
.             (1)            (1)                    | |
.             (1)            (1)                    | |
.               (1)          (1)                    | |
.                 (1)        (1)                    |_|
.    ----------------
.     19,8,5,3,2,1,1 --> Row 7 of triangle A207031.
.      |/|/|/|/|/|/|
.     11,3,2,1,1,0,1 --> Row 7 of this triangle.
.
Note that the "head" of the last section is formed by the partitions of 7 that do not contain 1 as a part. The "tail" is formed by A000041(7-1) parts of size 1. The number of rows (or zones) is A000041(7) = 15. The last section of the set of partitions of 7 contains eleven 1's, three 2's, two 3's, one 4, one 5, there are no 6's and it contains one 7. So, for k = 1..7, row 7 gives: 11, 3, 2, 1, 1, 0, 1.
Triangle begins:
   1;
   1,  1;
   2,  0,  1;
   3,  2,  0,  1;
   5,  1,  1,  0, 1;
   7,  4,  2,  1, 0, 1;
  11,  3,  2,  1, 1, 0, 1;
  15,  8,  3,  3, 1, 1, 0, 1;
  22,  7,  6,  2, 2, 1, 1, 0, 1;
  30, 15,  6,  5, 3, 2, 1, 1, 0, 1;
  42, 15, 10,  5, 4, 2, 2, 1, 1, 0, 1;
  56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1;
  ...
		

Crossrefs

Row sums give A138137. Where records occur is A134869.
Sub-triangles (1-11): A023531, A129186, A194702-A194710

Programs

  • Maple
    p:= (f, g)-> zip((x, y)-> x+y, f, g, 0):
    b:= proc(n,i) option remember; local g;
          if n=0        then [1]
        elif n<2 or i<2 then [0]
        else g:=   `if`(i>n, [0],  b(n-i, i));
             p(p([0$j=2..i, g[1]], b(n, i-1)), g)
          fi
        end:
    h:= proc(n) option remember;
          `if`(n=0, 1, b(n, n)[1]+h(n-1))
        end:
    T:= proc(n) h(n-1), b(n, n)[2..n][] end:
    seq(T(n), n=1..20);  # Alois P. Heinz, Feb 19 2012
  • Mathematica
    p[f_, g_] := Plus @@ PadRight[{f, g}]; b[n_, i_] := b[n, i] = Module[{g}, Which[n == 0, {1}, n<2 || i<2, {0}, True, g = If [i>n, {0}, b[n-i, i]]; p[p[Append[Array[0&, i-1], g[[1]]], b[n, i-1]], g]]]; h[n_] := h[n] = If[n == 0, 1, b[n, n][[1]] + h[n-1]]; t[n_] := {h[n-1], Sequence @@ b[n, n][[2 ;; n]]}; Table[t[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 16 2014, after Alois P. Heinz's Maple code *)
    Table[{PartitionsP[n-1]}~Join~Table[Count[Flatten@Cases[IntegerPartitions[n], x_ /; Last[x] != 1], k], {k,2,n}], {n,1,12}]  // Flatten (* Robert Price, May 15 2020 *)

Formula

It appears that T(n,k) = A207032(n,k) - A207032(n,k+2). - Omar E. Pol, Feb 26 2012

A141285 Largest part of the n-th partition of j in the list of colexicographically ordered partitions of j, if 1 <= n <= A000041(j).

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 5, 2, 4, 3, 6, 3, 5, 4, 7, 2, 4, 3, 6, 5, 4, 8, 3, 5, 4, 7, 3, 6, 5, 9, 2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11, 2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10, 3, 6, 5, 9, 4, 8, 7, 6, 12
Offset: 1

Views

Author

Omar E. Pol, Aug 01 2008

Keywords

Comments

Also largest part of the n-th region of the set of partitions of j, if 1 <= n <= A000041(j). For the definition of "region of the set of partitions of j" see A206437.
Also triangle read by rows: T(j,k) is the largest part of the k-th region in the last section of the set of partitions of j.
For row n >= 2 the rows of triangle are also the branches of a tree which is a projection of a three-dimensional structure of the section model of partitions of A135010, version tree. The branches of even rows give A182730. The branches of odd rows give A182731. Note that each column contains parts of the same size. It appears that the structure of A135010 is a periodic table of integer partitions. See also A210979 and A210980.
Also column 1 of: A193870, A206437, A210941, A210942, A210943. - Omar E. Pol, Sep 01 2013
Also row lengths of A211009. - Omar E. Pol, Feb 06 2014

Examples

			Written as a triangle T(j,k) the sequence begins:
  1;
  2;
  3;
  2, 4;
  3, 5;
  2, 4, 3, 6;
  3, 5, 4, 7;
  2, 4, 3, 6, 5, 4, 8;
  3, 5, 4, 7, 3, 6, 5, 9;
  2, 4, 3, 6, 5, 4, 8, 4, 7, 6, 5, 10;
  3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8,  7, 6, 11;
  ...
  ------------------------------------------
  n  A000041                a(n)
  ------------------------------------------
   1 = p(1)                   1
   2 = p(2)                 2 .
   3 = p(3)                   . 3
   4                        2 .
   5 = p(4)               4   .
   6                          . 3
   7 = p(5)                   .   5
   8                        2 .
   9                      4   .
  10                    3     .
  11 = p(6)           6       .
  12                          . 3
  13                          .   5
  14                          .     4
  15 = p(7)                   .       7
  ...
From _Omar E. Pol_, Aug 22 2013: (Start)
Illustration of initial terms (n = 1..11) in three ways: as the largest parts of the partitions of 6 (see A026792), also as the largest parts of the regions of the diagram, also as the diagonal of triangle. By definition of "region" the largest part of the n-th region is also the largest part of the n-th partition (see below):
  --------------------------------------------------------
  .                  Diagram         Triangle in which
  Partitions       of regions       rows are partitions
  of 6           and partitions   and columns are regions
  --------------------------------------------------------
  .                _ _ _ _ _ _
  6                _ _ _      |                         6
  3+3              _ _ _|_    |                       3 3
  4+2              _ _    |   |                     4   2
  2+2+2            _ _|_ _|_  |                   2 2   2
  5+1              _ _ _    | |                 5       1
  3+2+1            _ _ _|_  | |               3 1       1
  4+1+1            _ _    | | |             4   1       1
  2+2+1+1          _ _|_  | | |           2 2   1       1
  3+1+1+1          _ _  | | | |         3   1   1       1
  2+1+1+1+1        _  | | | | |       2 1   1   1       1
  1+1+1+1+1+1       | | | | | |     1 1 1   1   1       1
  ...
The equivalent sequence for compositions is A001511. Explanation: for the positive integer j the diagram of regions of the set of compositions of j has 2^(j-1) regions. The largest part of the n-th region is A001511(n). The number of parts is A006519(n). On the other hand the diagram of regions of the set of partitions of j has A000041(j) regions. The largest part of the n-th region is a(n) = A001511(A228354(n)). The number of parts is A194446(n). Both diagrams have j sections. The diagram for partitions can be interpreted as one of the three views of a three dimensional diagram of compositions in which the rows of partitions are in orthogonal direction to the rest. For the first five sections of the diagrams see below:
  --------------------------------------------------------
  .          Diagram                           Diagram
  .         of regions                        of regions
  .      and compositions                   and partitions
  ---------------------------------------------------------
  .      j = 1 2 3 4 5                     j = 1 2 3 4 5
  ---------------------------------------------------------
   n  A001511                    A228354  a(n)
  ---------------------------------------------------------
   1   1     _| | | | | ............ 1    1    _| | | | |
   2   2     _ _| | | | ............ 2    2    _ _| | | |
   3   1     _|   | | |    ......... 4    3    _ _ _| | |
   4   3     _ _ _| | | ../  ....... 6    2    _ _|   | |
   5   1     _| |   | |    / ....... 8    4    _ _ _ _| |
   6   2     _ _|   | | ../ /   .... 12   3    _ _ _|   |
   7   1     _|     | |    /   /   . 16   5    _ _ _ _ _|
   8   4     _ _ _ _| | ../   /   /
   9   1     _| | |   |      /   /
  10   2     _ _| |   |     /   /
  11   1     _|   |   |    /   /
  12   3     _ _ _|   | ../   /
  13   1     _| |     |      /
  14   2     _ _|     |     /
  15   1     _|       |    /
  16   5     _ _ _ _ _| ../
  ...
Also we can draw an infinite Dyck path in which the n-th odd-indexed line segment has a(n) up-steps and the n-th even-indexed line segment has A194446(n) down-steps. Note that the height of the n-th largest peak between two successive valleys at height 0 is also the partition number A000041(n). See below:
.                                 5
.                                 /\                 3
.                   4            /  \           4    /\
.                   /\          /    \          /\  /
.         3        /  \     3  /      \        /  \/
.    2    /\   2  /    \    /\/        \   2  /
. 1  /\  /  \  /\/      \  /            \  /\/
. /\/  \/    \/          \/              \/
.
.(End)
		

Crossrefs

Where records occur give A000041, n>=1. Column 1 is A158478. Row j has length A187219(j). Row sums give A138137. Right border gives A000027.

Programs

  • Mathematica
    Last/@DeleteCases[DeleteCases[Sort@PadRight[Reverse/@IntegerPartitions[13]], x_ /; x == 0, 2], {}] (* updated _Robert Price, May 15 2020 *)

Formula

a(n) = A001511(A228354(n)). - Omar E. Pol, Aug 22 2013

Extensions

Edited by Omar E. Pol, Nov 28 2010
Better definition and edited by Omar E. Pol, Oct 17 2013

A045623 Number of 1's in all compositions of n+1.

Original entry on oeis.org

1, 2, 5, 12, 28, 64, 144, 320, 704, 1536, 3328, 7168, 15360, 32768, 69632, 147456, 311296, 655360, 1376256, 2883584, 6029312, 12582912, 26214400, 54525952, 113246208, 234881024, 486539264, 1006632960, 2080374784, 4294967296, 8858370048, 18253611008, 37580963840
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the n X n matrix m_(i,j) = 2 + abs(i-j) then det(M_n) = (-1)^(n-1)*a(n-1). - Benoit Cloitre, May 28 2002
a(n) is the number of triangulations of a regular (n+3)-gon in which every triangle shares at least one side with the polygon itself. - David Callan, Mar 25 2004
Number of compositions of j+n, j>n and j the maximum part. E.g. a(4) is derived from the number of compositions of, for example: 54(2), 531(6), 522(3), 5211(12) and 51111(5) giving 2+6+3+12+5=28. - Jon Perry, Sep 13 2005
If X_1,X_2,...,X_n are 2-blocks of a (2n+2)-set X then, for n>=1, a(n+1) is the number of (n+1)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007
Generated from iterates of M * [1,1,1,...], where M = an infinite triadiagonal matrix with (1,1,1,...) in the main and superdiagonals and (1,0,0,0,...) in the subdiagonal. - Gary W. Adamson, Jan 04 2009
a(n) is the number of weak compositions of n with exactly 1 part equal to 0. - Milan Janjic, Jun 27 2010
An elephant sequence, see A175654. For the corner squares 16 A[5] vectors, with decimal values between 19 and 400, lead to this sequence. For the central square these vectors lead to the companion sequence A045891 (without the first leading 1). - Johannes W. Meijer, Aug 15 2010
Equals first finite difference row of A001792: (1, 3, 8, 20, 48, 112, ...). - Gary W. Adamson, Oct 26 2010
With alternating signs the g.f. is: (1 + x)^2/(1 + 2*x)^2.
Number of 132-avoiding permutations of [n+2] containing exactly one 213 pattern. - David Scambler, Nov 07 2011
a(n) is the number of 1's in all compositions of n+1 = the number of 2's in all compositions of n+2 = the number of 3's in all compositions of n+3 = ... So the partial sums = A001792. - Geoffrey Critzer, Feb 12 2012
Also number of compositions of n into 2 sorts of parts where all parts of the first sort precede all parts of the second sort; see example. - Joerg Arndt, Apr 28 2013
a(n) is also the difference of the total number of parts between all compositions of n+1 and all compositions of n. The equivalent sequence for partitions is A138137. - Omar E. Pol, Aug 28 2013
Except for an initial 1, this is the p-INVERT of (1,1,1,1,1,...) for p(S) = (1 - S)^2; see A291000. - Clark Kimberling, Aug 24 2017
For a composition of n, the total number of runs of parts of size k is a(n-k) - a(n-2k). - Gregory L. Simay, Feb 17 2018
a(n) is the number of binary trees on n+1 nodes that are isomorphic to a path graph. The ratio of a(n)/A000108(n+1) gives the probability that a random Catalan tree on n+1 nodes is isomorphic to a path graph. - Marcel K. Goh, May 09 2020
a(n) is the number of words of length n over the alphabet {0,1,2} such that the first letter is not 2 and the last 1 occurs before the first 0. - Henri Mühle, Mar 08 2021
Also the number of "special permutations" in the Weng and Zagier reference. - F. Chapoton, Sep 30 2022
a(n-k) is the total number of runs of 1s of length k over all binary n-strings. - Félix Balado, Dec 11 2022

Examples

			E.g. a(2)=5 because in the compositions of 3, namely 3,2+1,1+2,1+1+1, we have five 1's altogether.
There are a(3)=12 compositions of 3 into 2 sorts of parts where all parts of the first sort precede all parts of the second sort. Here p:s stands for "part p of sort s":
01:  [ 1:0  1:0  1:0  ]
02:  [ 1:0  1:0  1:1  ]
03:  [ 1:0  1:1  1:1  ]
04:  [ 1:0  2:0  ]
05:  [ 1:0  2:1  ]
06:  [ 1:1  1:1  1:1  ]
07:  [ 1:1  2:1  ]
08:  [ 2:0  1:0  ]
09:  [ 2:0  1:1  ]
10:  [ 2:1  1:1  ]
11:  [ 3:0  ]
12:  [ 3:1  ]
- _Joerg Arndt_, Apr 28 2013
For the compositions of 6, the total number of runs of parts of size 2 is a(6-2) - a(6-2*2) = 28 - 5 = 23, enumerated as follows (with the runs of 2 enclosed in []): 4,[2]; [2],4; [2],3,1; [2],1,3; 3,[2],1; 1,[2],3; 3,1,[2]; 1,3,[2]; [2,2,2]; [2,2],1,1; 1,[2,2],1; 1,1,[2,2]; [2],1,[2],1; 1,[2],1,[2]; [2],1,1,[2]; [2],1,1,1,1; 1,[2],1,1,1; 1,1,[2],1,1; 1,1,1,[2],1; and 1,1,1,1[2]. - _Gregory L. Simay_, Feb 17 2018
There are a(3)=12 triwords of length 3: (0,0,0), (0,0,2), (0,2,0), (0,2,2), (1,0,0), (1,0,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2). - _Henri Mühle_, Mar 08 2021
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Convolution of A011782.
Row sums of A103450, A152195, A177992, A198069.
Cf. A001792.

Programs

  • GAP
    a:=[2,5];; for n in [3..40] do a[n]:=4*a[n-1]-4*a[n-2]; od; Concatenation([1],a); # Muniru A Asiru, Oct 16 2018
    
  • Haskell
    a045623 n = a045623_list !! n
    a045623_list = tail $ f a011782_list [] where
       f (u:us) vs = sum (zipWith (*) vs $ reverse ws) : f us ws
         where ws = u : vs
    -- Reinhard Zumkeller, Jul 21 2013
    
  • Maple
    seq(ceil(1/4*2^n*(n+3)),n=0..50);
  • Mathematica
    Table[If[n==0, 1, 2^(n-2)(n+3)], {n, 0, 29}] (* Robert G. Wilson v, Jun 27 2005 *)
    CoefficientList[Series[(1 -2x +x^2)/(1-2x)^2, {x, 0, 30}], x] (* or *)
    LinearRecurrence[{4, -4}, {1, 2, 5}, 31] (* Robert G. Wilson v, Feb 18 2018 *)
  • Maxima
    a(n):=sum(((2*m+2)*n-2*m^2+1)*binomial(2*n+2,2*m+1),m,0,n)/((4*n+2)*2^n); /* Vladimir Kruchinin, Nov 01 2020 */
  • PARI
    a(n)=if(n<1,n==0,(n+3)*2^(n-2))
    

Formula

Sum_{k = 0..n} (k+2)*binomial(n,k) gives the sequence but with a different offset: 2, 5, 12, 28, 64, 144, 320, 704, 1536, ... - N. J. A. Sloane, Jan 30 2008 - formula corrected by Robert G. Wilson v, Feb 26 2018
Binomial transform of 1,1,2,2,3,3,... . - Paul Barry, Mar 06 2003
a(0)=1, a(n) = (n+3)*2^(n-2), n >= 1.
a(n+1) = 2*a(n) + 2^(n-1), n>0.
G.f.: (1-x)^2/(1-2*x)^2. - Detlef Pauly (dettodet(AT)yahoo.de), Mar 03 2003
G.f.: 1/(1-x-x^2-x^3-...)^2. - Jon Perry, Jul 04 2004
a(n) = Sum_{0 <= j <= k <= n} binomial(n, j+k). - Benoit Cloitre, Oct 14 2004
a(n) = Sum_{k=0..n} C(n, k)*floor((k+2)/2). - Paul Barry, Mar 06 2003
a(n+1) - 2*a(n) = A131577(n). - Paul Curtz, May 18 2008
G.f.: 1/(1-x) + Q(0)*x/(1-x)^3, where Q(k)= 1 + (k+1)*x/(1 - x - x*(1-x)/(x + (k+1)*(1-x)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 25 2013
a(n) = Sum_{k=0..n} (k+1)*C(n-1,n-k). - Peter Luschny, Apr 20 2015
a(n) = Sum_{k=0..n-1} a(k) + 2^(n-1) = A001787(n-1) + 2^n, a(0)=1. - Yuchun Ji, May 22 2020
a(n) = Sum_{m=0..n}((2*m+2)*n-2*m^2+1)*C(2*n+2,2*m+1)/((4*n+2)*2^n). - Vladimir Kruchinin, Nov 01 2020
E.g.f.: (1 + exp(2*x)*(3 + 2*x))/4. - Stefano Spezia, Dec 19 2021
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 32*log(2) - 61/3.
Sum_{n>=0} (-1)^n/a(n) = 32*log(3/2) - 37/3. (End)

A194446 Number of parts in the n-th region of the set of partitions of j, if 1<=n<=A000041(j).

Original entry on oeis.org

1, 2, 3, 1, 5, 1, 7, 1, 2, 1, 11, 1, 2, 1, 15, 1, 2, 1, 4, 1, 1, 22, 1, 2, 1, 4, 1, 2, 1, 30, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 42, 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 56, 1, 2, 1, 4, 1, 1, 7, 1, 2, 1, 1, 12, 1, 2, 1, 4, 1, 2, 1, 1, 77, 1, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 26 2011

Keywords

Comments

For the definition of "region" of the set of partitions of j, see A206437.
a(n) is also the number of positive integers in the n-th row of triangle A186114. a(n) is also the number of positive integers in the n-th row of triangle A193870.
Also triangle read by rows: T(j,k) = number of parts in the k-th region of the last section of the set of partitions of j. See example. For more information see A135010.
a(n) is also the length of the n-th vertical line segment in the minimalist diagram of regions and partitions. The length of the n-th horizontal line segment is A141285(n). See also A194447. - Omar E. Pol, Mar 04 2012
From Omar E. Pol, Aug 19 2013: (Start)
In order to construct this sequence with a cellular automaton we use the following rules: We start in the first quadrant of the square grid with no toothpicks. At stage n we place A141285(n) toothpicks of length 1 connected by their endpoints in horizontal direction starting from the point (0, n). Then we place toothpicks of length 1 connected by their endpoints in vertical direction starting from the exposed toothpick endpoint downward up to touch the structure or up to touch the x-axis. a(n) is the number of toothpicks in vertical direction added at n-th stage (see example section and A139250, A225600, A225610).
a(n) is also the length of the n-th descendent line segment in an infinite Dyck path in which the length of the n-th ascendent line segment is A141285(n). See Example section. For more information see A211978, A220517, A225600.
(End)
The equivalent sequence for compositions is A006519. - Omar E. Pol, Aug 22 2013

Examples

			Written as an irregular triangle the sequence begins:
  1;
  2;
  3;
  1, 5;
  1, 7;
  1, 2, 1, 11;
  1, 2, 1, 15;
  1, 2, 1,  4, 1, 1, 22;
  1, 2, 1,  4, 1, 2,  1, 30;
  1, 2, 1,  4, 1, 1,  7,  1, 2, 1, 1, 42;
  1, 2, 1,  4, 1, 2,  1,  8, 1, 1, 3,  1, 1, 56;
  1, 2, 1,  4, 1, 1,  7,  1, 2, 1, 1, 12, 1,  2, 1, 4, 1, 2, 1, 1, 77;
  ...
From _Omar E. Pol_, Aug 18 2013: (Start)
Illustration of initial terms (first seven regions):
.                                             _ _ _ _ _
.                                     _ _ _  |_ _ _ _ _|
.                           _ _ _ _  |_ _ _|       |_ _|
.                     _ _  |_ _ _ _|                 |_|
.             _ _ _  |_ _|     |_ _|                 |_|
.       _ _  |_ _ _|             |_|                 |_|
.   _  |_ _|     |_|             |_|                 |_|
.  |_|   |_|     |_|             |_|                 |_|
.
.   1     2       3     1         5       1           7
.
The next figure shows a minimalist diagram of the first seven regions. The n-th horizontal line segment has length A141285(n). a(n) is the length of the n-th vertical line segment, which is the vertical line segment ending in row n (see also A225610).
.      _ _ _ _ _
.  7   _ _ _    |
.  6   _ _ _|_  |
.  5   _ _    | |
.  4   _ _|_  | |
.  3   _ _  | | |
.  2   _  | | | |
.  1    | | | | |
.
.      1 2 3 4 5
.
Illustration of initial terms from an infinite Dyck path in which the length of the n-th ascendent line segment is A141285(n). a(n) is the length of the n-th descendent line segment.
.                                    /\
.                                   /  \
.                      /\          /    \
.                     /  \        /      \
.            /\      /    \    /\/        \
.       /\  /  \  /\/      \  / 1          \
.    /\/  \/    \/ 1        \/              \
.     1   2     3           5               7
.
(End)
		

Crossrefs

Row j has length A187219(j). Right border gives A000041, j >= 1. Records give A000041, j >= 1. Row sums give A138137.

Programs

  • Mathematica
    lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
    A194446 = {}; l = {};
    For[j = 1, j <= 30, j++,
      mx = Max@lex[j][[j]]; AppendTo[l, mx];
      For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
      AppendTo[A194446, j - i];
      ];
    A194446   (* Robert Price, Jul 25 2020 *)

Formula

a(n) = A141285(n) - A194447(n). - Omar E. Pol, Mar 04 2012

A336811 Irregular triangle read by rows T(n,k) in which the length of row n equals the partition number A000041(n-1) and every column k gives the positive integers A000027, with n >= 1 and k >= 1.

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 1, 5, 3, 2, 1, 1, 6, 4, 3, 2, 2, 1, 1, 7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 20 2020

Keywords

Comments

In other words: row n lists A028310(n-1) blocks where the m-th block consists of A187219(m) copies of n - m + [m=1], with n >= 1 and m >= 1, where [] is the Iverson bracket. [Corrected by Paolo Xausa, Feb 10 2023]
All divisors of all terms in row n are also all parts in the last section of the set of partitions of n.
Thus all divisors of all terms of the first n rows of triangle are also all parts of all partitions of n. In other words: all divisors of the first A000070(n-1) terms of the sequence are also all parts of all partitions of n. - Omar E. Pol, Jun 19 2021
From Omar E. Pol, Jul 31 2021: (Start)
The number of k's in row n is equal to A002865(n-k), 1 <= k <= n.
The number of terms >= k in row n is equal to A000041(n-k), 1 <= k <= n.
The number of k's in the first n rows (or in the first A000070(n-1) terms of the sequence) is equal to A000041(n-k), 1 <= k <= n.
The number of terms >= k in the first n rows (or in the first A000070(n-1) terms of the sequence) is equal to A000070(n-k), 1 <= k <= n.
First n rows of triangle (or first A000070(n-1) terms of the sequence) in nonincreasing order give the n-th row of A176206. (End)

Examples

			Triangle begins:
1;
2;
3, 1;
4, 2, 1;
5, 3, 2, 1, 1;
6, 4, 3, 2, 2, 1, 1;
7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1;
8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1;
9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
...
For n = 6, by definition the length of row 6 is A000041(6-1) = A000041(5) = 7, so the row 6 of triangle has seven terms. Since every column lists the positive integers A000027 so the row 6 is [6, 4, 3, 2, 2, 1, 1].
Then we have that the divisors of the numbers of the 6th row are:
.
6th row of the triangle ---------->   6 4 3 2 2 1 1
                                      3 2 1 1 1
                                      2 1
                                      1
.
There are seven 1's, four 2's, two 3's, one 4 and one 6.
In total there are 7 + 4 + 2 + 1 + 1 = 15 divisors.
On the other hand the last section of the set of the partitions of 6 can be represented in several ways, five of them as shown below:
._ _ _ _ _ _
|_ _ _      |       6    6                  6                       6
|_ _ _|_    |     3 3    3 3              3   3                     3   3
|_ _    |   |     4 2    4 2            4       2                     4     2
|_ _|_ _|_  |   2 2 2    2 2 2        2   2       2                 2 2   2
          | |       1      1                        1                           1
          | |       1        1                        1                       1
          | |       1        1                          1                   1
          | |       1          1                          1               1
          | |       1          1                            1           1
          | |       1            1                            1       1
          |_|       1              1                            1   1
.
   Figure 1.  Figure 2.  Figure 3.        Figure 4.                   Figure 5.
.
In every figure there are seven 1's, four 2's, two 3's, one 4 and one 6, as shown also the 6th row of A182703.
In total there are 7 + 4 + 2 + 1 + 1 = A138137(6) = 15 parts in every figure.
Figure 5 is an arrangement that shows the correspondence between divisors and parts since the columns give the divisors of the terms of 6th row of triangle.
Finally we can see that all divisors of all numbers in the 6th row of the triangle are the same positive integers as all parts in the last section of the set of the partitions of 6.
Example edited by _Omar E. Pol_, Aug 10 2021
		

Crossrefs

Row sums give A000070.
Row n has length A000041(n-1).
Every column k gives A000027.
Companion of A176206.

Programs

  • Mathematica
    A336811[row_]:=Flatten[Table[ConstantArray[row-m,PartitionsP[m]-PartitionsP[m-1]],{m,0,row-1}]];
    Array[A336811,10] (* Generates 10 rows *) (* Paolo Xausa, Feb 10 2023 *)
  • PARI
    f(n) = numbpart(n-1);
    T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (n)); my(s=0); while (k <= f(n-1), s++; n--;); 1+s;}
    tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n,k), ", ");); print;);} \\ Michel Marcus, Jan 13 2021

A221529 Triangle read by rows: T(n,k) = A000203(k)*A000041(n-k), 1 <= k <= n.

Original entry on oeis.org

1, 1, 3, 2, 3, 4, 3, 6, 4, 7, 5, 9, 8, 7, 6, 7, 15, 12, 14, 6, 12, 11, 21, 20, 21, 12, 12, 8, 15, 33, 28, 35, 18, 24, 8, 15, 22, 45, 44, 49, 30, 36, 16, 15, 13, 30, 66, 60, 77, 42, 60, 24, 30, 13, 18, 42, 90, 88, 105, 66, 84, 40, 45, 26, 18, 12, 56, 126, 120, 154, 90, 132, 56, 75, 39, 36, 12, 28
Offset: 1

Views

Author

Omar E. Pol, Jan 20 2013

Keywords

Comments

Since A000203(k) has a symmetric representation, both T(n,k) and the partial sums of row n can be represented by symmetric polycubes. For more information see A237593 and A237270. For another version see A245099. - Omar E. Pol, Jul 15 2014
From Omar E. Pol, Jul 10 2021: (Start)
The above comment refers to a symmetric tower whose terraces are the symmetric representation of sigma(i), for i = 1..n, starting from the top. The levels of these terraces are the partition numbers A000041(h-1), for h = 1 to n, starting from the base of the tower, where n is the length of the largest side of the base.
The base of the tower is the symmetric representation of A024916(n).
The height of the tower is equal to A000041(n-1).
The surface area of the tower is equal to A345023(n).
The volume (or the number of cubes) of the tower equals A066186(n).
The volume represents the n-th term of the convolution of A000203 and A000041, that is A066186(n).
Note that the terraces that are the symmetric representation of sigma(n) and the terraces that are the symmetric representation of sigma(n-1) both are unified in level 1 of the structure. That is because the first two partition numbers A000041 are [1, 1].
The tower is an object of the family of the stepped pyramid described in A245092.
T(n,k) can be represented with a set of A237271(k) right prisms of height A000041(n-k) since T(n,k) is the total number of cubes that are exactly below the parts of the symmetric representation of sigma(k) in the tower.
T(n,k) is also the sum of all divisors of all k's that are in the first n rows of triangle A336811, or in other words, in the first A000070(n-1) terms of the sequence A336811. Hence T(n,k) is also the sum of all divisors of all k's in the n-th row of triangle A176206.
The mentioned property is due to the correspondence between divisors and parts explained in A338156: all divisors of the first A000070(n-1) terms of A336811 are also all parts of all partitions of n.
Therefore the set of all partitions of n >= 1 has an associated tower.
The partial column sums of A340583 give this triangle showing the growth of the structure of the tower.
Note that the convolution of A000203 with any integer sequence S can be represented with a symmetric tower or structure of the same family where its terraces are the symmetric representation of sigma starting from the top and the heights of the terraces starting from the base are the terms of the sequence S. (End)

Examples

			Triangle begins:
------------------------------------------------------
    n| k    1   2   3   4   5   6   7   8   9  10
------------------------------------------------------
    1|      1;
    2|      1,  3;
    3|      2,  3,  4;
    4|      3,  6,  4,  7;
    5|      5,  9,  8,  7,  6;
    6|      7, 15, 12, 14,  6, 12;
    7|     11, 21, 20, 21, 12, 12,  8;
    8|     15, 33, 28, 35, 18, 24,  8, 15;
    9|     22, 45, 44, 49, 30, 36, 16, 15, 13;
   10|     30, 66, 60, 77, 42, 60, 24, 30, 13, 18;
...
The sum of row 10 is [30 + 66 + 60 + 77 + 42 + 60 + 24 + 30 + 13 + 18] = A066186(10) = 420.
.
For n = 10 the calculation of the row 10 is as follows:
    k    A000203         T(10,k)
    1       1   *  30   =   30
    2       3   *  22   =   66
    3       4   *  15   =   60
    4       7   *  11   =   77
    5       6   *   7   =   42
    6      12   *   5   =   60
    7       8   *   3   =   24
    8      15   *   2   =   30
    9      13   *   1   =   13
   10      18   *   1   =   18
                 A000041
.
From _Omar E. Pol_, Jul 13 2021: (Start)
For n = 10 we can see below three views of two associated polycubes called here "prism of partitions" and "tower". Both objects contain the same number of cubes (that property is valid for n >= 1).
        _ _ _ _ _ _ _ _ _ _
  42   |_ _ _ _ _          |
       |_ _ _ _ _|_        |
       |_ _ _ _ _ _|_      |
       |_ _ _ _      |     |
       |_ _ _ _|_ _ _|_    |
       |_ _ _ _        |   |
       |_ _ _ _|_      |   |
       |_ _ _ _ _|_    |   |
       |_ _ _      |   |   |
       |_ _ _|_    |   |   |
       |_ _    |   |   |   |
       |_ _|_ _|_ _|_ _|_  |                             _
  30   |_ _ _ _ _        | |                            | | 30
       |_ _ _ _ _|_      | |                            | |
       |_ _ _      |     | |                            | |
       |_ _ _|_ _ _|_    | |                            | |
       |_ _ _ _      |   | |                            | |
       |_ _ _ _|_    |   | |                            | |
       |_ _ _    |   |   | |                            | |
       |_ _ _|_ _|_ _|_  | |                           _|_|
  22   |_ _ _ _        | | |                          |   |  22
       |_ _ _ _|_      | | |                          |   |
       |_ _ _ _ _|_    | | |                          |   |
       |_ _ _      |   | | |                          |   |
       |_ _ _|_    |   | | |                          |   |
       |_ _    |   |   | | |                          |   |
       |_ _|_ _|_ _|_  | | |                         _|_ _|
  15   |_ _ _ _      | | | |                        | |   |  15
       |_ _ _ _|_    | | | |                        | |   |
       |_ _ _    |   | | | |                        | |   |
       |_ _ _|_ _|_  | | | |                       _|_|_ _|
  11   |_ _ _      | | | | |                      | |     |  11
       |_ _ _|_    | | | | |                      | |     |
       |_ _    |   | | | | |                      | |     |
       |_ _|_ _|_  | | | | |                     _| |_ _ _|
   7   |_ _ _    | | | | | |                    |   |     |   7
       |_ _ _|_  | | | | | |                   _|_ _|_ _ _|
   5   |_ _    | | | | | | |                  | | |       |   5
       |_ _|_  | | | | | | |                 _| | |_ _ _ _|
   3   |_ _  | | | | | | | |               _|_ _|_|_ _ _ _|   3
   2   |_  | | | | | | | | |           _ _|_ _|_|_ _ _ _ _|   2
   1   |_|_|_|_|_|_|_|_|_|_|          |_ _|_|_|_ _ _ _ _ _|   1
.
             Figure 1.                       Figure 2.
         Front view of the                 Lateral view
        prism of partitions.               of the tower.
.
.                                      _ _ _ _ _ _ _ _ _ _
                                      |   | | | | | | | |_|   1
                                      |   | | | | | |_|_ _|   2
                                      |   | | | |_|_  |_ _|   3
                                      |   | |_|_    |_ _ _|   4
                                      |   |_ _  |_  |_ _ _|   5
                                      |_ _    |_  |_ _ _ _|   6
                                          |_    | |_ _ _ _|   7
                                            |_  |_ _ _ _ _|   8
                                              |           |   9
                                              |_ _ _ _ _ _|  10
.
                                             Figure 3.
                                             Top view
                                           of the tower.
.
Figure 1 is a two-dimensional diagram of the partitions of 10 in colexicographic order (cf. A026792, A211992). The area of the diagram is 10*42 = A066186(10) = 420. Note that the diagram can be interpreted also as the front view of a right prism whose volume is 1*10*42 = 420 equaling the volume and the number of cubes of the tower that appears in the figures 2 and 3.
Note that the shape and the area of the lateral view of the tower are the same as the shape and the area where the 1's are located in the diagram of partitions. In this case the mentioned area equals A000070(10-1) = 97.
The connection between these two associated objects is a representation of the correspondence divisor/part described in A338156. See also A336812.
The sum of the volumes of both objects equals A220909.
For the connection with the table of A338156 see also A340035. (End)
		

Crossrefs

Programs

  • Mathematica
    nrows=12; Table[Table[DivisorSigma[1,k]PartitionsP[n-k],{k,n}],{n,nrows}] // Flatten (* Paolo Xausa, Jun 17 2022 *)
  • PARI
    T(n,k)=sigma(k)*numbpart(n-k) \\ Charles R Greathouse IV, Feb 19 2013

Formula

T(n,k) = sigma(k)*p(n-k) = A000203(k)*A027293(n,k).
T(n,k) = A245093(n,k)*A027293(n,k).

A194447 Rank of the n-th region of the set of partitions of j, if 1<=n<=A000041(j).

Original entry on oeis.org

0, 0, 0, 1, -1, 2, -2, 1, 2, 2, -5, 2, 3, 3, -8, 1, 2, 2, 2, 4, 3, -14, 2, 3, 3, 3, 2, 4, 4, -21, 1, 2, 2, 2, 4, 3, 1, 3, 5, 5, 4, -32, 2, 3, 3, 3, 2, 4, 4, 1, 4, 3, 5, 6, 5, -45, 1, 2, 2, 2, 4, 3, 1, 3, 5, 5, 4, -2, 2, 4, 4, 5, 3, 6, 6, 5, -65
Offset: 1

Views

Author

Omar E. Pol, Dec 04 2011

Keywords

Comments

Here the rank of a "region" is defined to be the largest part minus the number of parts (the same idea as the Dyson's rank of a partition).
Also triangle read by rows: T(j,k) = rank of the k-th region of the last section of the set of partitions of j.
The sum of every row is equal to zero.
Note that in some rows there are several negative terms. - Omar E. Pol, Oct 27 2012
For the definition of "region" see A206437. See also A225600 and A225610. - Omar E. Pol, Aug 12 2013

Examples

			In the triangle T(j,k) for j = 6 the number of regions in the last section of the set of partitions of 6 is equal to 4. The first region given by [2] has rank 2-1 = 1. The second region given by [4,2] has rank 4-2 = 2. The third region given by [3] has rank 3-1 = 2. The fourth region given by [6,3,2,2,1,1,1,1,1,1,1] has rank 6-11 = -5 (see below):
From _Omar E. Pol_, Aug 12 2013: (Start)
---------------------------------------------------------
.    Regions       Illustration of ranks of the regions
---------------------------------------------------------
.    For J=6        k=1     k=2      k=3        k=4
.  _ _ _ _ _ _                              _ _ _ _ _ _
. |_ _ _      |                     _ _ _   .          |
. |_ _ _|_    |           _ _ _ _   * * .|    .        |
. |_ _    |   |     _ _   * * .  |              .      |
. |_ _|_ _|_  |     * .|        .|                .    |
.           | |                                     .  |
.           | |                                       .|
.           | |                                       *|
.           | |                                       *|
.           | |                                       *|
.           | |                                       *|
.           |_|                                       *|
.
So row 6 lists:     1       2         2              -5
(End)
Written as a triangle begins:
0;
0;
0;
1,-1;
2,-2;
1,2,2,-5;
2,3,3,-8;
1,2,2,2,4,3,-14;
2,3,3,3,2,4,4,-21;
1,2,2,2,4,3,1,3,5,5,4,-32;
2,3,3,3,2,4,4,1,4,3,5,6,5,-45;
1,2,2,2,4,3,1,3,5,5,4,-2,2,4,4,5,3,6,6,5,-65;
2,3,3,3,2,4,4,1,4,3,5,6,5,-3,3,5,5,4,5,4,7,7,6,-88;
		

Crossrefs

Row j has length A187219(j). The absolute value of the last term of row j is A000094(j+1). Row sums give A000004.

Formula

a(n) = A141285(n) - A194446(n). - Omar E. Pol, Dec 05 2011

A207031 Triangle read by rows: T(n,k) = sum of all parts of the k-th column of the last section of the set of partitions of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 6, 3, 1, 1, 8, 3, 2, 1, 1, 15, 8, 4, 2, 1, 1, 19, 8, 5, 3, 2, 1, 1, 32, 17, 9, 6, 3, 2, 1, 1, 42, 20, 13, 7, 5, 3, 2, 1, 1, 64, 34, 19, 13, 8, 5, 3, 2, 1, 1, 83, 41, 26, 16, 11, 7, 5, 3, 2, 1, 1, 124, 68, 41, 27, 17, 12, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 14 2012

Keywords

Comments

Also T(n,k) is the number of parts >= k in the last section of the set of partitions of n. Therefore T(n,1) = A138137(n), the total number of parts in the last section of the set of partitions of n. For calculation of the number of odd/even parts, etc, follow the same rules from A206563.
More generally, let m and n be two positive integers such that m <= n. It appears that any set formed by m connected sections, or m disconnected sections, or a mixture of both, has the same properties described in the entry A206563.
It appears that reversed rows converge to A000041.
It appears that the first differences of row n together with 1 give the row n of triangle A182703 (see example). - Omar E. Pol, Feb 26 2012

Examples

			Illustration of initial terms. First six rows of triangle as sums of columns from the last sections of the first six natural numbers (or as sums of columns from the six sections of 6):
.                                         6
.                                         3 3
.                                         4 2
.                                         2 2 2
.                            5              1
.                            3 2              1
.                  4           1              1
.                  2 2           1              1
.          3         1           1              1
.     2      1         1           1              1
.  1    1      1         1           1              1
. --- --- ------- --------- ----------- --------------
A: 1, 2,1, 3,1,1,  6,3,1,1,  8,3,2,1,1,  15,8,4,2,1,1
.  |  |/|  |/|/|   |/|/|/|   |/|/|/|/|    |/|/|/|/|/|
B: 1, 1,1, 2,0,1,  3,2,0,1,  5,1,1,0,1,   7,4,2,1,0,1
.
A := initial terms of this triangle.
B := initial terms of triangle A182703.
.
Triangle begins:
1;
2,    1;
3,    1,  1;
6,    3,  1,  1;
8,    3,  2,  1,  1;
15,   8,  4,  2,  1,  1;
19,   8,  5,  3,  2,  1,  1;
32,  17,  9,  6,  3,  2,  1,  1;
42,  20, 13,  7,  5,  3,  2,  1,  1;
64,  34, 19, 13,  8,  5,  3,  2,  1,  1;
83,  41, 26, 16, 11,  7,  5,  3,  2,  1,  1;
124, 68, 41, 27, 17, 12,  7,  5,  3,  2,  1,  1;
		

Crossrefs

Formula

From Omar E. Pol, Dec 07 2019: (Start)
From the formula in A138135 (year 2008) we have that:
A000041(n-1) = A138137(n) - A138135(n) = T(n,1) - T(n,2);
Hence A000041(n) = T(n+1,1) - T(n+1,2), n >= 0;
Also A000041(n) = A002865(n) + T(n,1) - T(n,2). (End)

Extensions

More terms from Alois P. Heinz, Feb 17 2012
Showing 1-10 of 78 results. Next