cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Henri Mühle

Henri Mühle's wiki page.

Henri Mühle has authored 6 sequences.

A292853 Congruence-uniform lattices whose alternate order is a lattice.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 3, 8, 16, 41, 107, 304, 891, 2735
Offset: 1

Author

Henri Mühle, Sep 25 2017

Keywords

Comments

A lattice is congruence-uniform if it can be constructed from the singleton-lattice by a sequence of interval doublings. This doubling process gives rise to an alternate way of ordering the lattice elements. See the references for more details.

Crossrefs

Extensions

a(13)-a(14) from Henri Mühle, Aug 29 2019

A292790 Congruence-uniform lattices on n unlabeled nodes.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 22, 60, 174, 534, 1720, 5767, 20013, 71545
Offset: 1

Author

Henri Mühle, Sep 25 2017

Keywords

Comments

A lattice is congruence-uniform if it can be constructed from the singleton-lattice by a sequence of interval doublings.

Extensions

a(13)-a(14) from Henri Mühle, Aug 29 2019

A292852 Spherical congruence-uniform lattices on n unlabeled nodes.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 3, 8, 17, 45, 123, 367, 1148, 3792
Offset: 1

Author

Henri Mühle, Sep 25 2017

Keywords

Comments

A lattice is congruence-uniform if it can be constructed from the singleton-lattice by a sequence of interval doublings. A lattice is spherical if its Möbius function between least and greatest element equals 1 or -1.

Crossrefs

Cf. A292790.

Extensions

a(13)-a(14) from Henri Mühle, Aug 29 2019

A280891 Number of certain noncrossing set partitions.

Original entry on oeis.org

1, 4, 12, 37, 118, 387, 1298, 4433, 15366, 53924, 191216, 684114, 2466428, 8951945, 32683230, 119949945, 442281030, 1637618400, 6086481720, 22699003830, 84918443220, 318593346630, 1198421583684, 4518886787802, 17077448924828, 64671604514552, 245380598678208, 932708665735364, 3551238550341944, 13542393822575541
Offset: 1

Author

Henri Mühle, Jan 10 2017

Keywords

Comments

Let X_n be the set of all noncrossing set partitions of an n-element set that do not contain {n-1, n} as a block, and also do not contain the block {n} whenever 1 and n-1 are in the same block. a(n) is the number of elements of X_{n+2} in which n-2 and n-1 lie in the same block.
Equivalently, a(n) is the number of noncrossing set partitions of {1, 2, ..., n+2} such that n and n+1 belong to the same block, and if 1 also belongs to this block then n+2 does as well. This leads to the formula a(n) = C(n + 1) - C(n - 1), where C(n) is the n-th Catalan number (A000108): there are C(n + 1) noncrossing set partitions with n and n + 1 in the same block, and C(n - 1) noncrossing set partitions with {n + 2} a singleton block and 1, n, and n + 1 in the same block. - Joel B. Lewis, Apr 19 2017

Examples

			X_4 has the following 10 elements: 1|2|3|4, 12|3|4, 1|23|4, 1|24|3, 14|2|3, 1|234, 124|3, 14|23, 134|2, 1234. The a(2)=4 elements in which 2 and 3 are in the same block are 1|23|4, 1|234, 14|23, 1234.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 + x) (1 - 3 x - (1 - x) Sqrt[1 - 4 x])/(2 x^2), {x, 0, 30}], x] (* Michael De Vlieger, Jan 03 2020 *)
  • PARI
    C(n)=binomial(2*n,n)/(n+1);
    vector(66,n,C(n + 1) - C(n - 1)) \\ Joerg Arndt, Apr 19 2017

Formula

a(n) = C(n + 1) - C(n - 1) where C(n) is the n-th Catalan number (A000108). - Joel B. Lewis, Apr 19 2017
G.f.: (1 + x)*(1 - 3*x - (1 - x)*sqrt(1 - 4*x))/(2*x^2). - Ilya Gutkovskiy, Apr 20 2017

A274778 Number of proper mergings of an n-antichain and an n-chain.

Original entry on oeis.org

0, 3, 26, 442, 12899, 582381, 37700452, 3315996468, 380835212037, 55380159334315, 9950025870043126, 2165134468142294430, 561245519520167902471, 170913803045738754172185, 60421582956702701927410120, 24543570079301728283314502248, 11353373604627607560431407875081
Offset: 0

Author

Henri Mühle, Nov 11 2016

Keywords

Comments

a(n) is also the number of monotone (n+1)-colorings of a complete bipartite digraph K(n,n), where a monotone (n+1)-coloring is a labeling w of the vertices of K(n,n) with integers in {1,2,...,n+1} such that for every arc (e1, e2) we have w(e1) <= w(e2).

Examples

			For n=1, the three proper mergings of a 1-chain {x} and a 1-antichain {y} are x<y, y<x, and x,y.
		

Crossrefs

Cf. A085465.

Programs

  • Maple
    a := n -> add(((n-i+1)^n-(n-i)^n)*(i+1)^n, i=0..n):
    seq(a(n), n=0..16); # Peter Luschny, Nov 11 2016
  • Mathematica
    a[0] = 0; a[n_] := Sum[((n-i+1)^n - (n-i)^n)*(i+1)^n, {i, 0, n}];
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Jul 14 2018, after Peter Luschny *)
  • PARI
    a(n) = sum(i=1, n+1, ((n+2-i)^n - (n+1-i)^n)*i^n); \\ Michel Marcus, Jul 14 2018

Formula

a(n) = Sum_{i=1..n+1} ((n+2-i)^n - (n+1-i)^n)*i^n.

A215582 The number of proper mergings of two n-antichains.

Original entry on oeis.org

1, 3, 35, 1275, 154115, 71994363, 140595475715, 1133624776334235, 36970581556591250435, 4838797912961323412254203, 2535793883977350841761956006915, 5317221866238397002010248863448839835, 44602260230569982664472646479956459441496835, 1496585236610867406252010206465708857876795888774523
Offset: 0

Author

Henri Mühle, Aug 21 2012

Keywords

Comments

The number of proper mergings of an n-antichain and an m-antichain can be computed with the following formula: a(m,n)=Sum_{i+j+k=m} m!/(i!j!k!)*(-1)^k*(2^i+2^j-1)^n.

Examples

			For n=1, the a(1)=3 proper mergings of two 1-antichains ({a},{}) and ({b},{}) are the following three posets: ({a,b},{}), ({a,b},{(a,b)}), ({a,b},{(b,a)}).
		

Programs

  • Mathematica
    Table[Sum[Sum[Sum[If[i+j+k==n,n!/(i!j!k!)*(-1)^k*(2^i+2^j-1)^n,0],{i,0,n}],{j,0,n}],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Aug 23 2012 *)

Formula

a(n)=Sum_{i+j+k=n}{n!/(i!j!k!)*(-1)^k*(2^i+2^j-1)^n}.
limit n->infinity a(n)/(2^(n^2))=2 [From Vaclav Kotesovec, Aug 23 2012]