cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 287 results. Next

A182181 Total number of parts in the section model of partitions of A135010 with n regions.

Original entry on oeis.org

1, 3, 6, 7, 12, 13, 20, 21, 23, 24, 35, 36, 38, 39, 54, 55, 57, 58, 62, 63, 64, 86, 87, 89, 90, 94, 95, 97, 98, 128, 129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192, 193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275
Offset: 1

Views

Author

Omar E. Pol, Apr 23 2012

Keywords

Examples

			The first four regions of the section model of partitions are [1],[2, 1],[3, 1, 1],[2]. We can see that there are seven parts so a(4) = 7.
Written as a triangle begins:
    1;
    3;
    6;
    7,  12;
   13,  20;
   21,  23,  24,  35;
   36,  38,  39,  54;
   55,  57,  58,  62,  63,  64,  86;
   87,  89,  90,  94,  95,  97,  98, 128;
  129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192;
  193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275;
  ...
From _Omar E. Pol_, Oct 20 2014: (Start)
Illustration of initial terms:
.                                                _ _ _ _ _
.                                      _ _ _    |_ _ _    |
.                            _ _ _ _  |_ _ _|_  |_ _ _|_  |
.                    _ _    |_ _    | |_ _    | |_ _    | |
.            _ _ _  |_ _|_  |_ _|_  | |_ _|_  | |_ _|_  | |
.      _ _  |_ _  | |_ _  | |_ _  | | |_ _  | | |_ _  | | |
.  _  |_  | |_  | | |_  | | |_  | | | |_  | | | |_  | | | |
. |_| |_|_| |_|_|_| |_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|_|
.
.  1    3      6       7        12        13         20
.
.                                          _ _ _ _ _ _
.                             _ _ _       |_ _ _      |
.                _ _ _ _     |_ _ _|_     |_ _ _|_    |
.   _ _         |_ _    |    |_ _    |    |_ _    |   |
.  |_ _|_ _ _   |_ _|_ _|_   |_ _|_ _|_   |_ _|_ _|_  |
.  |_ _ _    |  |_ _ _    |  |_ _ _    |  |_ _ _    | |
.  |_ _ _|_  |  |_ _ _|_  |  |_ _ _|_  |  |_ _ _|_  | |
.  |_ _    | |  |_ _    | |  |_ _    | |  |_ _    | | |
.  |_ _|_  | |  |_ _|_  | |  |_ _|_  | |  |_ _|_  | | |
.  |_ _  | | |  |_ _  | | |  |_ _  | | |  |_ _  | | | |
.  |_  | | | |  |_  | | | |  |_  | | | |  |_  | | | | |
.  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|_|
.
.       21           23           24            35
(End)
		

Crossrefs

Partial sums of A194446.
Row j has length A187219(j).
Right border gives A006128.
For the definition of "region" see A206437.

Programs

  • Mathematica
    lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
    reg = {}; l = {};
    For[j = 1, j <= 56, j++,
      mx = Max@lex[j][[j]]; AppendTo[l, mx];
      For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
      AppendTo[reg, j - i];
      ];
    Accumulate@reg  (* Robert Price, Apr 22 2020, revised Jul 25 2020 *)

Formula

a(A000041(n)) = A006128(n), n >= 1.
a(A000041(n)) = A182727(A000041(n)). - Omar E. Pol, May 24 2012

A182244 Sum of all parts of the shell model of partitions of A135010 with n regions.

Original entry on oeis.org

1, 4, 9, 11, 20, 23, 35, 37, 43, 46, 66, 69, 76, 80, 105, 107, 113, 116, 129, 134, 138, 176, 179, 186, 190, 204, 207, 216, 221, 270, 272, 278, 281, 294, 299, 303, 326, 330, 340, 346, 351, 420, 423, 430, 434, 448, 451, 460, 465, 492, 497, 501, 516, 523, 529, 616
Offset: 1

Views

Author

Omar E. Pol, Apr 23 2012

Keywords

Examples

			The first four regions of the shell model of partitions are [1],[2, 1],[3, 1, 1],[2], so a(4) = (1)+(2+1)+(3+1+1)+(2) = 11.
Written as a triangle begins:
1;
4;
9;
11,  20;
23,  35;
37,  43, 46, 66;
69,  76, 80,105;
107,113,116,129,134,138,176;
179,186,190,204,207,216,221,270;
272,278,281,294,299,303,326,330,340,346,351,420;
423,430,434,448,451,460,465,492,497,501,516,523,529,616;
...
From _Omar E. Pol_, Aug 08 2013: (Start)
Illustration of initial terms:
.                                                _ _ _ _ _
.                                      _ _ _    |_ _ _    |
.                            _ _ _ _  |_ _ _|_  |_ _ _|_  |
.                    _ _    |_ _    | |_ _    | |_ _    | |
.            _ _ _  |_ _|_  |_ _|_  | |_ _|_  | |_ _|_  | |
.      _ _  |_ _  | |_ _  | |_ _  | | |_ _  | | |_ _  | | |
.  _  |_  | |_  | | |_  | | |_  | | | |_  | | | |_  | | | |
. |_| |_|_| |_|_|_| |_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|_|
.
.  1    4      9       11       20        23        35
.
.                                          _ _ _ _ _ _
.                             _ _ _       |_ _ _      |
.                _ _ _ _     |_ _ _|_     |_ _ _|_    |
.   _ _         |_ _    |    |_ _    |    |_ _    |   |
.  |_ _|_ _ _   |_ _|_ _|_   |_ _|_ _|_   |_ _|_ _|_  |
.  |_ _ _    |  |_ _ _    |  |_ _ _    |  |_ _ _    | |
.  |_ _ _|_  |  |_ _ _|_  |  |_ _ _|_  |  |_ _ _|_  | |
.  |_ _    | |  |_ _    | |  |_ _    | |  |_ _    | | |
.  |_ _|_  | |  |_ _|_  | |  |_ _|_  | |  |_ _|_  | | |
.  |_ _  | | |  |_ _  | | |  |_ _  | | |  |_ _  | | | |
.  |_  | | | |  |_  | | | |  |_  | | | |  |_  | | | | |
.  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|_|
.
.       37           43           46           66
(End)
		

Crossrefs

Partial sums of A186412. Row j has length A187219(j). Right border gives A066186.

Programs

  • Mathematica
    lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
    A186412 = {}; l = {};
    For[j = 1, j <= 56, j++,
      mx = Max@lex[j][[j]]; AppendTo[l, mx];
      For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
      AppendTo[A186412, Total@Take[Reverse[First /@ lex[mx]], j - i]];
      ];
    Accumulate@A186412  (* Robert Price, Jul 25 2020 *)

Formula

a(A000041(k)) = A066186(k), k >= 1.

A182980 Version "mirror" of the shell model of partitions of A135010. Triangle read by rows: row n lists the parts of the last section of the set of partitions of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 2, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 5, 3, 4, 7, 8, 4, 4, 3, 5, 2, 6, 2, 3, 3, 2, 2, 4, 2, 2, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Feb 02 2011

Keywords

Comments

In n is odd then row n lists the numbers of row n of A135010. If n is even the row n lists the 1's of row n of A135010 and then row n lists the other numbers of row n of A135010 in reverse order.

Examples

			Triangle begins:
1,
1, 2,
1, 1, 3,
1, 1, 1, 4, 2, 2,
1, 1, 1, 1, 1, 2, 3, 5,
1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 2, 4, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 5, 3, 4, 7,
		

Crossrefs

A206438 Triangle read by rows which lists the squares of the parts of A135010.

Original entry on oeis.org

1, 1, 4, 1, 1, 9, 1, 1, 1, 4, 4, 16, 1, 1, 1, 1, 1, 4, 9, 25, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 16, 9, 9, 36, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 9, 4, 25, 9, 16, 49, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 16, 4, 9, 9, 4, 36, 9, 25
Offset: 1

Views

Author

Omar E. Pol, Feb 08 2012

Keywords

Comments

Volumes of the parts in the section model of partitions version "boxes" in which each part of size k has a volume = k^2. Row sums of this triangle give A206440 and partial sums of A206440 give A066183.

Examples

			Written as a triangle:
1;
1,4;
1,1,9;
1,1,1,4,4,16;
1,1,1,1,1,4,9,25;
1,1,1,1,1,1,1,4,4,4,4,16,9,9,36;
1,1,1,1,1,1,1,1,1,1,1,4,4,9,4,25,9,16,49;
		

Crossrefs

Row n has length A138137(n).
Row sums give A206440.
Right border gives positives A000290.

Programs

  • Mathematica
    Table[Reverse@ConstantArray[{1}, PartitionsP[n - 1]] ~Join~ DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], {n, 1, 8}] ^2  // Flatten (* Robert Price, May 28 2020 *)

Formula

a(n) = A135010(n)^2.

A182985 Largest part of the n-th row of the table version "mirror" of the shell model of partitions of A135010 and A182980.

Original entry on oeis.org

1, 2, 3, 4, 2, 3, 5, 6, 3, 4, 2, 3, 5, 4, 7, 8, 4, 5, 6, 3, 4, 2, 3, 5, 4, 7, 3, 6, 5, 9, 10, 5, 6, 7, 4, 8, 4, 5, 6, 3, 4, 2, 3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11
Offset: 1

Views

Author

Omar E. Pol, Feb 02 2011

Keywords

Comments

If n is odd then row n lists the numbers of row n of A141285. If n is even then row n lists the numbers of row n of A141285 but in reverse order.

Examples

			Triangle begins:
1,
2,
3,
4, 2,
3, 5,
6, 3, 4, 2,
3, 5, 4, 7,
8, 4, 5, 6, 3, 4, 2,
3, 5, 4, 7, 3, 6, 5, 9,
10,5, 6, 7, 4, 8, 4, 5, 6, 3, 4, 2,
3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11,
		

Crossrefs

A211030 Sum of all parts in the structure of the shell model of partitions of A135010 after n-th stage.

Original entry on oeis.org

1, 2, 4, 5, 6, 9, 10, 11, 12, 14, 16, 20, 21, 22, 23, 24, 25, 27, 30, 35, 36, 37, 38, 39, 40, 41, 42, 44, 46, 48, 50, 54, 57, 60, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 84, 86, 91, 94, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114
Offset: 1

Views

Author

Omar E. Pol, Apr 25 2012

Keywords

Comments

This sequence shows the growth of the shell model of A135010 step by step. At stage n one part of size A135010(n) is added to the structure.

Examples

			Written as a triangle begins:
1;
2,  4;
5,  6, 9;
10,11,12,14,16,20;
21,22,23,24,25,27,30,35;
36,37,38,39,40,41,42,44,46,48,50,54,57,60,66;
67,68,69,70,71,72,73,74,75,76,77,79,81,84,86,91,94,98,105;
		

Crossrefs

Partial sums of A135010. Row j has length A138137(j). Right border give A066186.

A182289 Triangle read by rows. Let p be one of the parts of size A135010(n,k) in one of the partitions of n and S(n,k) = sum of all preceding parts to p in the mentioned partition of n. So T(n,k) = 2*S(n,k) + A135010(n,k).

Original entry on oeis.org

1, 3, 2, 5, 5, 3, 7, 7, 7, 6, 2, 4, 9, 9, 9, 9, 9, 8, 3, 5, 11, 11, 11, 11, 11, 11, 11, 10, 6, 2, 10, 4, 9, 3, 6, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 8, 3, 12, 5, 11, 4, 7, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 10, 6
Offset: 1

Views

Author

Omar E. Pol, Aug 14 2012

Keywords

Comments

Consider a physical model of the partitions of n in which each part p of size A135010(n,j) is represented by a right circular cylinder with radius j and height 2. T(n,k) is also the distance (or coordinate X) from the axis Y to the center of the base of cylinder of the part p in the structure of A135010.

Examples

			Written as an irregular triangle the sequence begins:
1;
3,2;
5,5,3;
7,7,7,6,2,4;
9,9,9,9,9,8,3,5;
11,11,11,11,11,11,11,10,6,2,10,4,9,3,6;
13,13,13,13,13,13,13,13,13,13,13,12,8,3,12,5,11,4,7;
15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,14,10,6,2,14,10,4,14,9,3,14,6,13,5,10,4,8;
		

Crossrefs

Row n starts with A000041(n-1) terms equal to A005408(n-1). Row n has length A138137(n). Right border gives A000027.
Cf. A135010.

A027750 Triangle read by rows in which row n lists the divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 5, 10, 1, 11, 1, 2, 3, 4, 6, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 2, 4, 8, 16, 1, 17, 1, 2, 3, 6, 9, 18, 1, 19, 1, 2, 4, 5, 10, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 4, 6, 8, 12, 24, 1, 5, 25, 1, 2, 13, 26, 1, 3, 9, 27, 1, 2, 4, 7, 14, 28, 1, 29
Offset: 1

Views

Author

Keywords

Comments

Or, in the list of natural numbers (A000027), replace n with its divisors.
This gives the first elements of the ordered pairs (a,b) a >= 1, b >= 1 ordered by their product ab.
Also, row n lists the largest parts of the partitions of n whose parts are not distinct. - Omar E. Pol, Sep 17 2008
Concatenation of n-th row gives A037278(n). - Reinhard Zumkeller, Aug 07 2011
{A210208(n,k): k=1..A073093(n)} subset of {T(n,k): k=1..A000005(n)} for all n. - Reinhard Zumkeller, Mar 18 2012
Row sums give A000203. Right border gives A000027. - Omar E. Pol, Jul 29 2012
Indices of records are in A006218. - Irina Gerasimova, Feb 27 2013
The number of primes in the n-th row is omega(n) = A001221(n). - Michel Marcus, Oct 21 2015
The row polynomials P(n,x) = Sum_{k=1..A000005(n)} T(n,k)*x^k with composite n which are irreducible over the integers are given in A292226. - Wolfdieter Lang, Nov 09 2017
T(n,k) is also the number of parts in the k-th partition of n into equal parts (see example). - Omar E. Pol, Nov 20 2019
Let there be an infinite number of tiles, each labeled with a positive integer m, initially placed on square m of an infinite 1D board. At step n, the leftmost unblocked tile (i.e., the top tile of the leftmost nonempty stack) moves forward exactly m squares, where m is its label. Tiles that land on the same square form a stack, and only the top tile of any stack may move. This sequence records the label m of the tile that moves at step n. - Ali Sada, May 23 2025
All divisors of a positive integer n form a finite set. Extending divisibility to n = 0 by using the definition (k|n <=> exists m such that m*k = n) makes the set of divisors infinite, suggesting the definition was not intended for zero, as arithmetic functions typically apply to n >= 1. So to preserve a core property when generalizing (cardinality), one can define divisors of n >= 0 as the fixed points of the greatest common divisor on the set [n] = {0, 1, 2, ..., n}. By this definition, the divisors of 0 are {0}, since 0|0 and gcd(0, 0) = 0. This definition is not circular because the gcd can be effectively calculated using the Euclidean algorithm. (Cf. links.) - Peter Luschny, Jun 02 2025

Examples

			Triangle begins:
  1;
  1, 2;
  1, 3;
  1, 2, 4;
  1, 5;
  1, 2, 3, 6;
  1, 7;
  1, 2, 4, 8;
  1, 3, 9;
  1, 2, 5, 10;
  1, 11;
  1, 2, 3, 4, 6, 12;
  ...
For n = 6 the partitions of 6 into equal parts are [6], [3,3], [2,2,2], [1,1,1,1,1,1], so the number of parts are [1, 2, 3, 6] respectively, the same as the divisors of 6. - _Omar E. Pol_, Nov 20 2019
		

Crossrefs

Cf. A000005 (row length), A001221, A027749, A027751, A056534, A056538, A127093, A135010, A161700, A163280, A240698 (partial sums of rows), A240694 (partial products of rows), A247795 (parities), A292226, A244051.

Programs

  • Haskell
    a027750 n k = a027750_row n !! (k-1)
    a027750_row n = filter ((== 0) . (mod n)) [1..n]
    a027750_tabf = map a027750_row [1..]
    -- Reinhard Zumkeller, Jan 15 2011, Oct 21 2010
    
  • Magma
    [Divisors(n) : n in [1..20]];
    
  • Maple
    seq(op(numtheory:-divisors(a)), a = 1 .. 20) # Matt C. Anderson, May 15 2017
  • Mathematica
    Flatten[ Table[ Flatten [ Divisors[ n ] ], {n, 1, 30} ] ]
  • PARI
    v=List();for(n=1,20,fordiv(n,d,listput(v,d)));Vec(v) \\ Charles R Greathouse IV, Apr 28 2011
    
  • Python
    from sympy import divisors
    for n in range(1, 16):
        print(divisors(n)) # Indranil Ghosh, Mar 30 2017

Formula

a(A006218(n-1) + k) = k-divisor of n, 1 <= k <= A000005(n). - Reinhard Zumkeller, May 10 2006
T(n,k) = n / A056538(n,k) = A056538(n,n-k+1), 1 <= k <= A000005(n). - Reinhard Zumkeller, Sep 28 2014

Extensions

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)

A138121 Triangle read by rows in which row n lists the partitions of n that do not contain 1 as a part in juxtaposed reverse-lexicographical order followed by A000041(n-1) 1's.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 2, 2, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 4, 5, 3, 6, 2, 3, 3, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 5, 4, 6, 3, 3, 3, 3, 7, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Mar 21 2008

Keywords

Comments

Mirror of triangle A135010.

Examples

			Triangle begins:
[1];
[2],[1];
[3],[1],[1];
[4],[2,2],[1],[1],[1];
[5],[3,2],[1],[1],[1],[1],[1];
[6],[3,3],[4,2],[2,2,2],[1],[1],[1],[1],[1],[1],[1];
[7],[4,3],[5,2],[3,2,2],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1];
...
The illustration of the three views of the section model of partitions (version "tree" with seven sections) shows the connection between several sequences.
---------------------------------------------------------
Partitions                A194805            Table 1.0
.  of 7       p(n)        A194551             A135010
---------------------------------------------------------
7              15                    7     7 . . . . . .
4+3                                4       4 . . . 3 . .
5+2                              5         5 . . . . 2 .
3+2+2                          3           3 . . 2 . 2 .
6+1            11    6       1             6 . . . . . 1
3+3+1                  3     1             3 . . 3 . . 1
4+2+1                    4   1             4 . . . 2 . 1
2+2+2+1                    2 1             2 . 2 . 2 . 1
5+1+1           7            1   5         5 . . . . 1 1
3+2+1+1                      1 3           3 . . 2 . 1 1
4+1+1+1         5        4   1             4 . . . 1 1 1
2+2+1+1+1                  2 1             2 . 2 . 1 1 1
3+1+1+1+1       3            1 3           3 . . 1 1 1 1
2+1+1+1+1+1     2          2 1             2 . 1 1 1 1 1
1+1+1+1+1+1+1   1            1             1 1 1 1 1 1 1
.               1                         ---------------
.               *<------- A000041 -------> 1 1 2 3 5 7 11
.                         A182712 ------->   1 0 2 1 4 3
.                         A182713 ------->     1 0 1 2 2
.                         A182714 ------->       1 0 1 1
.                                                  1 0 1
.                         A141285           A182703  1 0
.                    A182730   A182731                 1
---------------------------------------------------------
.                              A138137 --> 1 2 3 6 9 15..
---------------------------------------------------------
.       A182746 <--- 4 . 2 1 0 1 2 . 4 ---> A182747
---------------------------------------------------------
.
.       A182732 <--- 6 3 4 2 1 3 5 4 7 ---> A182733
.                    . . . . 1 . . . .
.                    . . . 2 1 . . . .
.                    . 3 . . 1 2 . . .
.      Table 2.0     . . 2 2 1 . . 3 .     Table 2.1
.                    . . . . 1 2 2 . .
.                            1 . . . .
.
.  A182982  A182742       A194803       A182983  A182743
.  A182992  A182994       A194804       A182993  A182995
---------------------------------------------------------
.
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6. Note that before the dissection the set of partitions was in the ordering mentioned in A026792. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
Illustration of initial terms:
---------------------------------------
n  j     Diagram          Parts
---------------------------------------
.         _
1  1     |_|              1;
.         _ _
2  1     |_  |            2,
2  2       |_|            .  1;
.         _ _ _
3  1     |_ _  |          3,
3  2         | |          .  1,
3  3         |_|          .  .  1;
.         _ _ _ _
4  1     |_ _    |        4,
4  2     |_ _|_  |        2, 2,
4  3           | |        .  1,
4  4           | |        .  .  1,
4  5           |_|        .  .  .  1;
.         _ _ _ _ _
5  1     |_ _ _    |      5,
5  2     |_ _ _|_  |      3, 2,
5  3             | |      .  1,
5  4             | |      .  .  1,
5  5             | |      .  .  1,
5  6             | |      .  .  .  1,
5  7             |_|      .  .  .  .  1;
.         _ _ _ _ _ _
6  1     |_ _ _      |    6,
6  2     |_ _ _|_    |    3, 3,
6  3     |_ _    |   |    4, 2,
6  4     |_ _|_ _|_  |    2, 2, 2,
6  5               | |    .  1,
6  6               | |    .  .  1,
6  7               | |    .  .  1,
6  8               | |    .  .  .  1,
6  9               | |    .  .  .  1,
6  10              | |    .  .  .  .  1,
6  11              |_|    .  .  .  .  .  1;
...
(End)
		

Crossrefs

Row n has length A138137(n).
Rows sums give A138879.

Programs

  • Mathematica
    less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[Array[1 &, {PartitionsP[n - 1]}], Sort[Reverse /@ Select[IntegerPartitions[n], FreeQ[#, 1] &], less]] // Flatten // Reverse; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 15 2013 *)
    Table[Reverse/@Reverse@DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x]!=1]], x_ /; x==0, 2]~Join~ConstantArray[{1}, PartitionsP[n - 1]], {n, 1, 9}]  // Flatten (* Robert Price, May 11 2020 *)

A035363 Number of partitions of n into even parts.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 11, 0, 15, 0, 22, 0, 30, 0, 42, 0, 56, 0, 77, 0, 101, 0, 135, 0, 176, 0, 231, 0, 297, 0, 385, 0, 490, 0, 627, 0, 792, 0, 1002, 0, 1255, 0, 1575, 0, 1958, 0, 2436, 0, 3010, 0, 3718, 0, 4565, 0, 5604, 0, 6842, 0, 8349, 0, 10143, 0, 12310, 0
Offset: 0

Views

Author

Keywords

Comments

Convolved with A036469 = A000070. - Gary W. Adamson, Jun 09 2009
Note that these partitions are located in the head of the last section of the set of partitions of n (see A135010). - Omar E. Pol, Nov 20 2009
Number of symmetric unimodal compositions of n+2 where the maximal part appears twice, see example. Also number of symmetric unimodal compositions of n where the maximal part appears an even number of times. - Joerg Arndt, Jun 11 2013
Number of partitions of n having parts of even multiplicity. These are the conjugates of the partitions from the definition. Example: a(8)=5 because we have [4,4],[3,3,1,1],[2,2,2,2],[2,2,1,1,1,1], and [1,1,1,1,1,1,1,1]. - Emeric Deutsch, Jan 27 2016
From Gus Wiseman, May 22 2021: (Start)
The Heinz numbers of the conjugate partitions described in Emeric Deutsch's comment above are given by A000290.
For n > 1, also the number of integer partitions of n-1 whose only odd part is the smallest. The Heinz numbers of these partitions are given by A341446. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns shown as dots, A..D = 10..13) are:
1 . 3 . 5 . 7 . 9 . B . D
21 41 43 63 65 85
221 61 81 83 A3
421 441 A1 C1
2221 621 443 643
4221 641 661
22221 821 841
4421 A21
6221 4441
42221 6421
222221 8221
44221
62221
422221
2222221
Also the number of integer partitions of n whose greatest part is the sum of all the other parts. The Heinz numbers of these partitions are given by A344415. For example, the a(2) = 1 through a(12) = 11 partitions (empty columns not shown) are:
(11) (22) (33) (44) (55) (66)
(211) (321) (422) (532) (633)
(3111) (431) (541) (642)
(4211) (5221) (651)
(41111) (5311) (6222)
(52111) (6321)
(511111) (6411)
(62211)
(63111)
(621111)
(6111111)
Also the number of integer partitions of n of length n/2. The Heinz numbers of these partitions are given by A340387. For example, the a(2) = 1 through a(14) = 15 partitions (empty columns not shown) are:
(2) (22) (222) (2222) (22222) (222222) (2222222)
(31) (321) (3221) (32221) (322221) (3222221)
(411) (3311) (33211) (332211) (3322211)
(4211) (42211) (333111) (3332111)
(5111) (43111) (422211) (4222211)
(52111) (432111) (4322111)
(61111) (441111) (4331111)
(522111) (4421111)
(531111) (5222111)
(621111) (5321111)
(711111) (5411111)
(6221111)
(6311111)
(7211111)
(8111111)
(End)

Examples

			From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(12)=11 symmetric unimodal compositions of 12+2=14 where the maximal part appears twice:
01:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
02:  [ 1 1 1 1 3 3 1 1 1 1 ]
03:  [ 1 1 1 4 4 1 1 1 ]
04:  [ 1 1 2 3 3 2 1 1 ]
05:  [ 1 1 5 5 1 1 ]
06:  [ 1 2 4 4 2 1 ]
07:  [ 1 6 6 1 ]
08:  [ 2 2 3 3 2 2 ]
09:  [ 2 5 5 2 ]
10:  [ 3 4 4 3 ]
11:  [ 7 7 ]
There are a(14)=15 symmetric unimodal compositions of 14 where the maximal part appears an even number of times:
01:  [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
02:  [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
03:  [ 1 1 1 1 3 3 1 1 1 1 ]
04:  [ 1 1 1 2 2 2 2 1 1 1 ]
05:  [ 1 1 1 4 4 1 1 1 ]
06:  [ 1 1 2 3 3 2 1 1 ]
07:  [ 1 1 5 5 1 1 ]
08:  [ 1 2 2 2 2 2 2 1 ]
09:  [ 1 2 4 4 2 1 ]
10:  [ 1 3 3 3 3 1 ]
11:  [ 1 6 6 1 ]
12:  [ 2 2 3 3 2 2 ]
13:  [ 2 5 5 2 ]
14:  [ 3 4 4 3 ]
15:  [ 7 7 ]
(End)
a(8)=5 because we  have [8], [6,2], [4,4], [4,2,2], and [2,2,2,2]. - _Emeric Deutsch_, Jan 27 2016
From _Gus Wiseman_, May 22 2021: (Start)
The a(0) = 1 through a(12) = 11 partitions into even parts are the following (empty columns shown as dots, A = 10, C = 12). The Heinz numbers of these partitions are given by A066207.
  ()  .  (2)  .  (4)   .  (6)    .  (8)     .  (A)      .  (C)
                 (22)     (42)      (44)       (64)        (66)
                          (222)     (62)       (82)        (84)
                                    (422)      (442)       (A2)
                                    (2222)     (622)       (444)
                                               (4222)      (642)
                                               (22222)     (822)
                                                           (4422)
                                                           (6222)
                                                           (42222)
                                                           (222222)
(End)
		

References

  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.

Crossrefs

Bisection (even part) gives the partition numbers A000041.
Column k=0 of A103919, A264398.
Note: A-numbers of ranking sequences are in parentheses below.
The version for odd instead of even parts is A000009 (A066208).
The version for parts divisible by 3 instead of 2 is A035377.
The strict case is A035457.
The Heinz numbers of these partitions are given by A066207.
The ordered version (compositions) is A077957 prepended by (1,0).
This is column k = 2 of A168021.
The multiplicative version (factorizations) is A340785.
A000569 counts graphical partitions (A320922).
A004526 counts partitions of length 2 (A001358).
A025065 counts palindromic partitions (A265640).
A027187 counts partitions with even length/maximum (A028260/A244990).
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts partitions of even length and sum (A340784).
A340601 counts partitions of even rank (A340602).
The following count partitions of even length:
- A096373 cannot be partitioned into strict pairs (A320891).
- A338914 can be partitioned into strict pairs (A320911).
- A338915 cannot be partitioned into distinct pairs (A320892).
- A338916 can be partitioned into distinct pairs (A320912).
- A339559 cannot be partitioned into distinct strict pairs (A320894).
- A339560 can be partitioned into distinct strict pairs (A339561).

Programs

  • Maple
    ZL:= [S, {C = Cycle(B), S = Set(C), E = Set(B), B = Prod(Z,Z)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..69); # Zerinvary Lajos, Mar 26 2008
    g := 1/mul(1-x^(2*k), k = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 0 .. 78); # Emeric Deutsch, Jan 27 2016
    # Using the function EULER from Transforms (see link at the bottom of the page).
    [1,op(EULER([0,1,seq(irem(n,2),n=0..66)]))]; # Peter Luschny, Aug 19 2020
    # next Maple program:
    a:= n-> `if`(n::odd, 0, combinat[numbpart](n/2)):
    seq(a(n), n=0..84);  # Alois P. Heinz, Jun 22 2021
  • Mathematica
    nmax = 50; s = Range[2, nmax, 2];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)
  • Python
    from sympy import npartitions
    def A035363(n): return 0 if n&1 else npartitions(n>>1) # Chai Wah Wu, Sep 23 2023

Formula

G.f.: Product_{k even} 1/(1 - x^k).
Convolution with the number of partitions into distinct parts (A000009, which is also number of partitions into odd parts) gives the number of partitions (A000041). - Franklin T. Adams-Watters, Jan 06 2006
If n is even then a(n)=A000041(n/2) otherwise a(n)=0. - Omar E. Pol, Nov 20 2009
G.f.: 1 + x^2*(1 - G(0))/(1-x^2) where G(k) = 1 - 1/(1-x^(2*k+2))/(1-x^2/(x^2-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 23 2013
a(n) = A096441(n) - A000009(n), n >= 1. - Omar E. Pol, Aug 16 2013
G.f.: exp(Sum_{k>=1} x^(2*k)/(k*(1 - x^(2*k)))). - Ilya Gutkovskiy, Aug 13 2018
Showing 1-10 of 287 results. Next