A182181
Total number of parts in the section model of partitions of A135010 with n regions.
Original entry on oeis.org
1, 3, 6, 7, 12, 13, 20, 21, 23, 24, 35, 36, 38, 39, 54, 55, 57, 58, 62, 63, 64, 86, 87, 89, 90, 94, 95, 97, 98, 128, 129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192, 193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275
Offset: 1
The first four regions of the section model of partitions are [1],[2, 1],[3, 1, 1],[2]. We can see that there are seven parts so a(4) = 7.
Written as a triangle begins:
1;
3;
6;
7, 12;
13, 20;
21, 23, 24, 35;
36, 38, 39, 54;
55, 57, 58, 62, 63, 64, 86;
87, 89, 90, 94, 95, 97, 98, 128;
129, 131, 132, 136, 137, 138, 145, 146, 148, 149, 150, 192;
193, 195, 196, 200, 201, 203, 204, 212, 213, 214, 217, 218, 219, 275;
...
From _Omar E. Pol_, Oct 20 2014: (Start)
Illustration of initial terms:
. _ _ _ _ _
. _ _ _ |_ _ _ |
. _ _ _ _ |_ _ _|_ |_ _ _|_ |
. _ _ |_ _ | |_ _ | |_ _ | |
. _ _ _ |_ _|_ |_ _|_ | |_ _|_ | |_ _|_ | |
. _ _ |_ _ | |_ _ | |_ _ | | |_ _ | | |_ _ | | |
. _ |_ | |_ | | |_ | | |_ | | | |_ | | | |_ | | | |
. |_| |_|_| |_|_|_| |_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|_|
.
. 1 3 6 7 12 13 20
.
. _ _ _ _ _ _
. _ _ _ |_ _ _ |
. _ _ _ _ |_ _ _|_ |_ _ _|_ |
. _ _ |_ _ | |_ _ | |_ _ | |
. |_ _|_ _ _ |_ _|_ _|_ |_ _|_ _|_ |_ _|_ _|_ |
. |_ _ _ | |_ _ _ | |_ _ _ | |_ _ _ | |
. |_ _ _|_ | |_ _ _|_ | |_ _ _|_ | |_ _ _|_ | |
. |_ _ | | |_ _ | | |_ _ | | |_ _ | | |
. |_ _|_ | | |_ _|_ | | |_ _|_ | | |_ _|_ | | |
. |_ _ | | | |_ _ | | | |_ _ | | | |_ _ | | | |
. |_ | | | | |_ | | | | |_ | | | | |_ | | | | |
. |_|_|_|_|_| |_|_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 21 23 24 35
(End)
For the definition of "region" see
A206437.
-
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
reg = {}; l = {};
For[j = 1, j <= 56, j++,
mx = Max@lex[j][[j]]; AppendTo[l, mx];
For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
AppendTo[reg, j - i];
];
Accumulate@reg (* Robert Price, Apr 22 2020, revised Jul 25 2020 *)
A182244
Sum of all parts of the shell model of partitions of A135010 with n regions.
Original entry on oeis.org
1, 4, 9, 11, 20, 23, 35, 37, 43, 46, 66, 69, 76, 80, 105, 107, 113, 116, 129, 134, 138, 176, 179, 186, 190, 204, 207, 216, 221, 270, 272, 278, 281, 294, 299, 303, 326, 330, 340, 346, 351, 420, 423, 430, 434, 448, 451, 460, 465, 492, 497, 501, 516, 523, 529, 616
Offset: 1
The first four regions of the shell model of partitions are [1],[2, 1],[3, 1, 1],[2], so a(4) = (1)+(2+1)+(3+1+1)+(2) = 11.
Written as a triangle begins:
1;
4;
9;
11, 20;
23, 35;
37, 43, 46, 66;
69, 76, 80,105;
107,113,116,129,134,138,176;
179,186,190,204,207,216,221,270;
272,278,281,294,299,303,326,330,340,346,351,420;
423,430,434,448,451,460,465,492,497,501,516,523,529,616;
...
From _Omar E. Pol_, Aug 08 2013: (Start)
Illustration of initial terms:
. _ _ _ _ _
. _ _ _ |_ _ _ |
. _ _ _ _ |_ _ _|_ |_ _ _|_ |
. _ _ |_ _ | |_ _ | |_ _ | |
. _ _ _ |_ _|_ |_ _|_ | |_ _|_ | |_ _|_ | |
. _ _ |_ _ | |_ _ | |_ _ | | |_ _ | | |_ _ | | |
. _ |_ | |_ | | |_ | | |_ | | | |_ | | | |_ | | | |
. |_| |_|_| |_|_|_| |_|_|_| |_|_|_|_| |_|_|_|_| |_|_|_|_|_|
.
. 1 4 9 11 20 23 35
.
. _ _ _ _ _ _
. _ _ _ |_ _ _ |
. _ _ _ _ |_ _ _|_ |_ _ _|_ |
. _ _ |_ _ | |_ _ | |_ _ | |
. |_ _|_ _ _ |_ _|_ _|_ |_ _|_ _|_ |_ _|_ _|_ |
. |_ _ _ | |_ _ _ | |_ _ _ | |_ _ _ | |
. |_ _ _|_ | |_ _ _|_ | |_ _ _|_ | |_ _ _|_ | |
. |_ _ | | |_ _ | | |_ _ | | |_ _ | | |
. |_ _|_ | | |_ _|_ | | |_ _|_ | | |_ _|_ | | |
. |_ _ | | | |_ _ | | | |_ _ | | | |_ _ | | | |
. |_ | | | | |_ | | | | |_ | | | | |_ | | | | |
. |_|_|_|_|_| |_|_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 37 43 46 66
(End)
-
lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
A186412 = {}; l = {};
For[j = 1, j <= 56, j++,
mx = Max@lex[j][[j]]; AppendTo[l, mx];
For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
AppendTo[A186412, Total@Take[Reverse[First /@ lex[mx]], j - i]];
];
Accumulate@A186412 (* Robert Price, Jul 25 2020 *)
A182980
Version "mirror" of the shell model of partitions of A135010. Triangle read by rows: row n lists the parts of the last section of the set of partitions of n.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 2, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 5, 3, 4, 7, 8, 4, 4, 3, 5, 2, 6, 2, 3, 3, 2, 2, 4, 2, 2, 2, 2
Offset: 1
Triangle begins:
1,
1, 2,
1, 1, 3,
1, 1, 1, 4, 2, 2,
1, 1, 1, 1, 1, 2, 3, 5,
1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 2, 4, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 5, 3, 4, 7,
A206438
Triangle read by rows which lists the squares of the parts of A135010.
Original entry on oeis.org
1, 1, 4, 1, 1, 9, 1, 1, 1, 4, 4, 16, 1, 1, 1, 1, 1, 4, 9, 25, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 16, 9, 9, 36, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 9, 4, 25, 9, 16, 49, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 16, 4, 9, 9, 4, 36, 9, 25
Offset: 1
Written as a triangle:
1;
1,4;
1,1,9;
1,1,1,4,4,16;
1,1,1,1,1,4,9,25;
1,1,1,1,1,1,1,4,4,4,4,16,9,9,36;
1,1,1,1,1,1,1,1,1,1,1,4,4,9,4,25,9,16,49;
Right border gives positives
A000290.
-
Table[Reverse@ConstantArray[{1}, PartitionsP[n - 1]] ~Join~ DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], {n, 1, 8}] ^2 // Flatten (* Robert Price, May 28 2020 *)
A182985
Largest part of the n-th row of the table version "mirror" of the shell model of partitions of A135010 and A182980.
Original entry on oeis.org
1, 2, 3, 4, 2, 3, 5, 6, 3, 4, 2, 3, 5, 4, 7, 8, 4, 5, 6, 3, 4, 2, 3, 5, 4, 7, 3, 6, 5, 9, 10, 5, 6, 7, 4, 8, 4, 5, 6, 3, 4, 2, 3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11
Offset: 1
Triangle begins:
1,
2,
3,
4, 2,
3, 5,
6, 3, 4, 2,
3, 5, 4, 7,
8, 4, 5, 6, 3, 4, 2,
3, 5, 4, 7, 3, 6, 5, 9,
10,5, 6, 7, 4, 8, 4, 5, 6, 3, 4, 2,
3, 5, 4, 7, 3, 6, 5, 9, 5, 4, 8, 7, 6, 11,
A211030
Sum of all parts in the structure of the shell model of partitions of A135010 after n-th stage.
Original entry on oeis.org
1, 2, 4, 5, 6, 9, 10, 11, 12, 14, 16, 20, 21, 22, 23, 24, 25, 27, 30, 35, 36, 37, 38, 39, 40, 41, 42, 44, 46, 48, 50, 54, 57, 60, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 81, 84, 86, 91, 94, 98, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114
Offset: 1
Written as a triangle begins:
1;
2, 4;
5, 6, 9;
10,11,12,14,16,20;
21,22,23,24,25,27,30,35;
36,37,38,39,40,41,42,44,46,48,50,54,57,60,66;
67,68,69,70,71,72,73,74,75,76,77,79,81,84,86,91,94,98,105;
A182289
Triangle read by rows. Let p be one of the parts of size A135010(n,k) in one of the partitions of n and S(n,k) = sum of all preceding parts to p in the mentioned partition of n. So T(n,k) = 2*S(n,k) + A135010(n,k).
Original entry on oeis.org
1, 3, 2, 5, 5, 3, 7, 7, 7, 6, 2, 4, 9, 9, 9, 9, 9, 8, 3, 5, 11, 11, 11, 11, 11, 11, 11, 10, 6, 2, 10, 4, 9, 3, 6, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 12, 8, 3, 12, 5, 11, 4, 7, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 10, 6
Offset: 1
Written as an irregular triangle the sequence begins:
1;
3,2;
5,5,3;
7,7,7,6,2,4;
9,9,9,9,9,8,3,5;
11,11,11,11,11,11,11,10,6,2,10,4,9,3,6;
13,13,13,13,13,13,13,13,13,13,13,12,8,3,12,5,11,4,7;
15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,14,10,6,2,14,10,4,14,9,3,14,6,13,5,10,4,8;
A027750
Triangle read by rows in which row n lists the divisors of n.
Original entry on oeis.org
1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 5, 10, 1, 11, 1, 2, 3, 4, 6, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 2, 4, 8, 16, 1, 17, 1, 2, 3, 6, 9, 18, 1, 19, 1, 2, 4, 5, 10, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 4, 6, 8, 12, 24, 1, 5, 25, 1, 2, 13, 26, 1, 3, 9, 27, 1, 2, 4, 7, 14, 28, 1, 29
Offset: 1
Triangle begins:
1;
1, 2;
1, 3;
1, 2, 4;
1, 5;
1, 2, 3, 6;
1, 7;
1, 2, 4, 8;
1, 3, 9;
1, 2, 5, 10;
1, 11;
1, 2, 3, 4, 6, 12;
...
For n = 6 the partitions of 6 into equal parts are [6], [3,3], [2,2,2], [1,1,1,1,1,1], so the number of parts are [1, 2, 3, 6] respectively, the same as the divisors of 6. - _Omar E. Pol_, Nov 20 2019
Cf.
A000005 (row length),
A001221,
A027749,
A027751,
A056534,
A056538,
A127093,
A135010,
A161700,
A163280,
A240698 (partial sums of rows),
A240694 (partial products of rows),
A247795 (parities),
A292226,
A244051.
-
a027750 n k = a027750_row n !! (k-1)
a027750_row n = filter ((== 0) . (mod n)) [1..n]
a027750_tabf = map a027750_row [1..]
-- Reinhard Zumkeller, Jan 15 2011, Oct 21 2010
-
[Divisors(n) : n in [1..20]];
-
seq(op(numtheory:-divisors(a)), a = 1 .. 20) # Matt C. Anderson, May 15 2017
-
Flatten[ Table[ Flatten [ Divisors[ n ] ], {n, 1, 30} ] ]
-
v=List();for(n=1,20,fordiv(n,d,listput(v,d)));Vec(v) \\ Charles R Greathouse IV, Apr 28 2011
-
from sympy import divisors
for n in range(1, 16):
print(divisors(n)) # Indranil Ghosh, Mar 30 2017
More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
A138121
Triangle read by rows in which row n lists the partitions of n that do not contain 1 as a part in juxtaposed reverse-lexicographical order followed by A000041(n-1) 1's.
Original entry on oeis.org
1, 2, 1, 3, 1, 1, 4, 2, 2, 1, 1, 1, 5, 3, 2, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 4, 4, 5, 3, 6, 2, 3, 3, 2, 4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 5, 4, 6, 3, 3, 3, 3, 7, 2, 4, 3, 2, 5, 2, 2, 3, 2, 2
Offset: 1
Triangle begins:
[1];
[2],[1];
[3],[1],[1];
[4],[2,2],[1],[1],[1];
[5],[3,2],[1],[1],[1],[1],[1];
[6],[3,3],[4,2],[2,2,2],[1],[1],[1],[1],[1],[1],[1];
[7],[4,3],[5,2],[3,2,2],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1],[1];
...
The illustration of the three views of the section model of partitions (version "tree" with seven sections) shows the connection between several sequences.
---------------------------------------------------------
Partitions A194805 Table 1.0
. of 7 p(n) A194551 A135010
---------------------------------------------------------
7 15 7 7 . . . . . .
4+3 4 4 . . . 3 . .
5+2 5 5 . . . . 2 .
3+2+2 3 3 . . 2 . 2 .
6+1 11 6 1 6 . . . . . 1
3+3+1 3 1 3 . . 3 . . 1
4+2+1 4 1 4 . . . 2 . 1
2+2+2+1 2 1 2 . 2 . 2 . 1
5+1+1 7 1 5 5 . . . . 1 1
3+2+1+1 1 3 3 . . 2 . 1 1
4+1+1+1 5 4 1 4 . . . 1 1 1
2+2+1+1+1 2 1 2 . 2 . 1 1 1
3+1+1+1+1 3 1 3 3 . . 1 1 1 1
2+1+1+1+1+1 2 2 1 2 . 1 1 1 1 1
1+1+1+1+1+1+1 1 1 1 1 1 1 1 1 1
. 1 ---------------
. *<------- A000041 -------> 1 1 2 3 5 7 11
. A182712 -------> 1 0 2 1 4 3
. A182713 -------> 1 0 1 2 2
. A182714 -------> 1 0 1 1
. 1 0 1
. A141285 A182703 1 0
. A182730 A182731 1
---------------------------------------------------------
. A138137 --> 1 2 3 6 9 15..
---------------------------------------------------------
. A182746 <--- 4 . 2 1 0 1 2 . 4 ---> A182747
---------------------------------------------------------
.
. A182732 <--- 6 3 4 2 1 3 5 4 7 ---> A182733
. . . . . 1 . . . .
. . . . 2 1 . . . .
. . 3 . . 1 2 . . .
. Table 2.0 . . 2 2 1 . . 3 . Table 2.1
. . . . . 1 2 2 . .
. 1 . . . .
.
. A182982 A182742 A194803 A182983 A182743
. A182992 A182994 A194804 A182993 A182995
---------------------------------------------------------
.
From _Omar E. Pol_, Sep 03 2013: (Start)
Illustration of initial terms (n = 1..6). The table shows the six sections of the set of partitions of 6. Note that before the dissection the set of partitions was in the ordering mentioned in A026792. More generally, the six sections of the set of partitions of 6 also can be interpreted as the first six sections of the set of partitions of any integer >= 6.
Illustration of initial terms:
---------------------------------------
n j Diagram Parts
---------------------------------------
. _
1 1 |_| 1;
. _ _
2 1 |_ | 2,
2 2 |_| . 1;
. _ _ _
3 1 |_ _ | 3,
3 2 | | . 1,
3 3 |_| . . 1;
. _ _ _ _
4 1 |_ _ | 4,
4 2 |_ _|_ | 2, 2,
4 3 | | . 1,
4 4 | | . . 1,
4 5 |_| . . . 1;
. _ _ _ _ _
5 1 |_ _ _ | 5,
5 2 |_ _ _|_ | 3, 2,
5 3 | | . 1,
5 4 | | . . 1,
5 5 | | . . 1,
5 6 | | . . . 1,
5 7 |_| . . . . 1;
. _ _ _ _ _ _
6 1 |_ _ _ | 6,
6 2 |_ _ _|_ | 3, 3,
6 3 |_ _ | | 4, 2,
6 4 |_ _|_ _|_ | 2, 2, 2,
6 5 | | . 1,
6 6 | | . . 1,
6 7 | | . . 1,
6 8 | | . . . 1,
6 9 | | . . . 1,
6 10 | | . . . . 1,
6 11 |_| . . . . . 1;
...
(End)
-
less[run1_, run2_] := (lg1 = run1 // Length; lg2 = run2 // Length; lg = Max[lg1, lg2]; r1 = If[lg1 == lg, run1, PadRight[run1, lg, 0]]; r2 = If[lg2 == lg, run2, PadRight[run2, lg, 0]]; Order[r1, r2] != -1); row[n_] := Join[Array[1 &, {PartitionsP[n - 1]}], Sort[Reverse /@ Select[IntegerPartitions[n], FreeQ[#, 1] &], less]] // Flatten // Reverse; Table[row[n], {n, 1, 9}] // Flatten (* Jean-François Alcover, Jan 15 2013 *)
Table[Reverse/@Reverse@DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x]!=1]], x_ /; x==0, 2]~Join~ConstantArray[{1}, PartitionsP[n - 1]], {n, 1, 9}] // Flatten (* Robert Price, May 11 2020 *)
A035363
Number of partitions of n into even parts.
Original entry on oeis.org
1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 11, 0, 15, 0, 22, 0, 30, 0, 42, 0, 56, 0, 77, 0, 101, 0, 135, 0, 176, 0, 231, 0, 297, 0, 385, 0, 490, 0, 627, 0, 792, 0, 1002, 0, 1255, 0, 1575, 0, 1958, 0, 2436, 0, 3010, 0, 3718, 0, 4565, 0, 5604, 0, 6842, 0, 8349, 0, 10143, 0, 12310, 0
Offset: 0
From _Joerg Arndt_, Jun 11 2013: (Start)
There are a(12)=11 symmetric unimodal compositions of 12+2=14 where the maximal part appears twice:
01: [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
02: [ 1 1 1 1 3 3 1 1 1 1 ]
03: [ 1 1 1 4 4 1 1 1 ]
04: [ 1 1 2 3 3 2 1 1 ]
05: [ 1 1 5 5 1 1 ]
06: [ 1 2 4 4 2 1 ]
07: [ 1 6 6 1 ]
08: [ 2 2 3 3 2 2 ]
09: [ 2 5 5 2 ]
10: [ 3 4 4 3 ]
11: [ 7 7 ]
There are a(14)=15 symmetric unimodal compositions of 14 where the maximal part appears an even number of times:
01: [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 2 2 1 1 1 1 1 ]
03: [ 1 1 1 1 3 3 1 1 1 1 ]
04: [ 1 1 1 2 2 2 2 1 1 1 ]
05: [ 1 1 1 4 4 1 1 1 ]
06: [ 1 1 2 3 3 2 1 1 ]
07: [ 1 1 5 5 1 1 ]
08: [ 1 2 2 2 2 2 2 1 ]
09: [ 1 2 4 4 2 1 ]
10: [ 1 3 3 3 3 1 ]
11: [ 1 6 6 1 ]
12: [ 2 2 3 3 2 2 ]
13: [ 2 5 5 2 ]
14: [ 3 4 4 3 ]
15: [ 7 7 ]
(End)
a(8)=5 because we have [8], [6,2], [4,4], [4,2,2], and [2,2,2,2]. - _Emeric Deutsch_, Jan 27 2016
From _Gus Wiseman_, May 22 2021: (Start)
The a(0) = 1 through a(12) = 11 partitions into even parts are the following (empty columns shown as dots, A = 10, C = 12). The Heinz numbers of these partitions are given by A066207.
() . (2) . (4) . (6) . (8) . (A) . (C)
(22) (42) (44) (64) (66)
(222) (62) (82) (84)
(422) (442) (A2)
(2222) (622) (444)
(4222) (642)
(22222) (822)
(4422)
(6222)
(42222)
(222222)
(End)
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education, Vol. 31, No. 1, pp. 24-28, Winter 1997. MathEduc Database (Zentralblatt MATH, 1997c.01891).
- Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17. Zentralblatt MATH, Zbl 1071.05501.
Bisection (even part) gives the partition numbers
A000041.
Note: A-numbers of ranking sequences are in parentheses below.
The version for parts divisible by 3 instead of 2 is
A035377.
The Heinz numbers of these partitions are given by
A066207.
The ordered version (compositions) is
A077957 prepended by (1,0).
The multiplicative version (factorizations) is
A340785.
The following count partitions of even length:
Cf.
A000041,
A000290,
A087897,
A100484,
A110618,
A209816,
A210249,
A233771,
A339004,
A340385,
A340387,
A340786,
A341447.
-
ZL:= [S, {C = Cycle(B), S = Set(C), E = Set(B), B = Prod(Z,Z)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..69); # Zerinvary Lajos, Mar 26 2008
g := 1/mul(1-x^(2*k), k = 1 .. 100): gser := series(g, x = 0, 80): seq(coeff(gser, x, n), n = 0 .. 78); # Emeric Deutsch, Jan 27 2016
# Using the function EULER from Transforms (see link at the bottom of the page).
[1,op(EULER([0,1,seq(irem(n,2),n=0..66)]))]; # Peter Luschny, Aug 19 2020
# next Maple program:
a:= n-> `if`(n::odd, 0, combinat[numbpart](n/2)):
seq(a(n), n=0..84); # Alois P. Heinz, Jun 22 2021
-
nmax = 50; s = Range[2, nmax, 2];
Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Aug 05 2020 *)
-
from sympy import npartitions
def A035363(n): return 0 if n&1 else npartitions(n>>1) # Chai Wah Wu, Sep 23 2023
Showing 1-10 of 287 results.
Comments