cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Matt C. Anderson

Matt C. Anderson's wiki page.

Matt C. Anderson has authored 15 sequences. Here are the ten most recent ones:

A350856 Initial members of prime triples (p, p+2, p+14).

Original entry on oeis.org

3, 5, 17, 29, 59, 137, 149, 179, 197, 227, 269, 419, 599, 617, 659, 809, 1019, 1049, 1277, 1289, 1607, 1787, 1997, 2129, 2237, 2267, 2657, 2789, 3167, 3257, 3299, 3329, 3359, 3527, 3557, 3917, 3929, 4217, 4229, 4259, 4547, 4637, 4649, 4787, 4799, 5009, 5099
Offset: 1

Author

Matt C. Anderson, Jan 19 2022

Keywords

Comments

According to the k-tuple conjecture this sequence is theoretically infinite.

Crossrefs

Cf. A022004 (p,p+2,p+6), A046134 (p,p+2,p+8), A046135 (p,p+2,p+12).

Programs

  • Maple
    for a from 3 to 1000 by 2 do
    if isprime(a) and isprime(a+2) and isprime(a+14) then
    print(a);
    end if
    end do
    # second Maple program:
    q:= p-> andmap(isprime, [p, p+2, p+14]):
    select(q, [$1..10000])[];  # Alois P. Heinz, Jan 28 2022
  • Mathematica
    Select[Range[7000], And @@ PrimeQ[# + {0, 2, 14}] &] (* Amiram Eldar, Jan 20 2022 *)

A290124 a(n) = a(n-1) + 12*a(n-2) with a(1) = 1 and a(2) = 2.

Original entry on oeis.org

1, 2, 14, 38, 206, 662, 3134, 11078, 48686, 181622, 765854, 2945318, 12135566, 47479382, 193106174, 762858758, 3080132846, 12234437942, 49196032094, 196009287398, 786361672526, 3138473121302, 12574813191614, 50236490647238, 201134248946606, 803972136713462, 3217583124072734
Offset: 1

Author

Matt C. Anderson, Jul 20 2017

Keywords

Comments

The binomial transform is 1, 3, 19, 87,.... (A015528 shifted). - R. J. Mathar, Apr 07 2022

Crossrefs

Programs

  • Magma
    [(5/28)*4^n-(2/21)*(-3)^n: n in [1..30]]; // Vincenzo Librandi, Aug 27 2017
  • Mathematica
    CoefficientList[Series[(1 + x) / ((1 + 3 x) (1 - 4 x)), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 27 2017 *)
  • PARI
    a(n) = if (n==1, 1, if (n==2, 2, a(n-1) + 12*a(n-2))); \\ Michel Marcus, Jul 25 2017
    

Formula

a(n) = (5/28)*4^n - (2/21)*(-3)^n.
G.f.: x*(1+x)/((1+3*x)*(1-4*x)). - Vincenzo Librandi, Aug 27 2017

A277338 Reverse and Add! sequence starting with 295.

Original entry on oeis.org

295, 887, 1675, 7436, 13783, 52514, 94039, 187088, 1067869, 10755470, 18211171, 35322452, 60744805, 111589511, 227574622, 454050344, 897100798, 1794102596, 8746117567, 16403234045, 70446464506, 130992928913, 450822227944, 900544455998, 1800098901007, 8801197801088, 17602285712176, 84724043932847, 159547977975595
Offset: 0

Author

Matt C. Anderson, Oct 09 2016

Keywords

Comments

Apart from the initial term in both sequences, the same as A006960.
a(0) = 295; a(n+1) = a(n) + A004086(a(n)).
295 is conjectured to be the second smallest initial term which does not lead to a palindrome. Also, 196 is possibly the smallest initial term which does not lead to a palindrome. a(0) = 196 is described in A006960.

Examples

			a(0) = 295
a(1) = 295 + 592 = 887
a(2) = 887 + 788 = 1675
...
		

Crossrefs

Cf. A004086.
Almost the same as A006960.
See index entries at A023108.

Programs

  • Maple
    with(StringTools):
    revnum := proc (n)
    local a, b, c;
    description "to REVerse the digits of a NUMber";
    a := convert(n, string);
    b := Reverse(a);
    c := convert(b, decimal, 10)
    end proc;
    f := 0;
    e := 295;
    count := 0;
    while f <> e do
    e := e+f;
    f := revnum(e);
    count := count+1
    end do;
  • Mathematica
    a[1] = 295; a[n_] := a[n] = FromDigits@ Reverse@ IntegerDigits@ # + # &@ a[n - 1]; Array[a, 29] (* Michael De Vlieger, Oct 14 2016 *)
  • PARI
    terms(n) = my(x=295, i=0); while(1, print1(x, ", "); x=x+eval(concat(Vecrev(Str(x)))); i++; if(i==n, break))
    /* Print initial 30 terms as follows: */
    terms(30) \\ Felix Fröhlich, Nov 15 2016

Formula

a(n) = A006960(n) for n >= 1.
a(n) = A243238(295, n+1). - Felix Fröhlich, Nov 20 2016

A247018 Numbers of the form 3*z^2 + z + 3 for some integer z.

Original entry on oeis.org

3, 5, 7, 13, 17, 27, 33, 47, 55, 73, 83, 105, 117, 143, 157, 187, 203, 237, 255, 293, 313, 355, 377, 423, 447, 497, 523, 577, 605, 663, 693, 755, 787, 853, 887, 957, 993, 1067, 1105, 1183, 1223, 1305, 1347, 1433, 1477, 1567, 1613, 1707, 1755, 1853, 1903
Offset: 1

Author

Matt C. Anderson, Sep 09 2014

Keywords

Comments

Note that z is allowed to be negative. - N. J. A. Sloane, Jul 09 2021
Subsequence of A134407.
Numbers k such that 12*k - 35 is a square. - Robert Israel, Sep 18 2014

Crossrefs

Programs

  • Maple
    select(t -> issqr(12*t-35), [$1..1000]); # Robert Israel, Sep 18 2014
  • Mathematica
    Union[Flatten[Table[3z^2+{z,-z}+3,{z,0,40}]]] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{3,5,7,13,17},60] (* Harvey P. Dale, Jul 10 2021 *)
  • PARI
    Vec(x*(3 + 2*x - 4*x^2 + 2*x^3 + 3*x^4) / ((1 - x)^3*(1 + x)^2) + O(x^60)) \\ Colin Barker, Feb 01 2018

Formula

From Colin Barker, Feb 01 2018: (Start)
G.f.: x*(3 + 2*x - 4*x^2 + 2*x^3 + 3*x^4) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5. (End)

Extensions

At some point in the history of this entry the definition was changed from the correct definition to the erroneous "a(n) = 3*n^2 + n + 3". I have restored the original definition, and I deleted some incorrect programs. Thanks to Harvey P. Dale for pointing out that something was wrong. - N. J. A. Sloane, Jul 09 2021.

A248015 Positive numbers n such that n^2 + 1 is composite and there are no positive integers c and z such that n = c*z^2 + z + c.

Original entry on oeis.org

8, 18, 28, 30, 34, 44, 46, 48, 50, 58, 60, 64, 68, 70, 76, 78, 86, 88, 96, 98, 100, 104, 108, 114, 118, 128, 136, 144, 148, 158, 164, 166, 168, 178, 186, 188, 190, 194, 196, 198, 200
Offset: 1

Author

Matt C. Anderson, Sep 29 2014

Keywords

Comments

Subset of A134407.
If f(x) = x^2 + 1 and g(c,y) = c*y^2 + y + c then the algebraic substitution of g for x gives a factorization: f(g(c,y)) = (y^2 + 1)*(c^2*y^2 + c^2 + 2*c*y + 1). Since both factors of f(g(c,y)) are integers greater than one, f(g(c,y)) is a composite number.
The numbers are necessarily even terms from A134407 since for odd n = 2c + 1 one has the "forbidden" decomposition with z = 1. - M. F. Hasler, Oct 04 2014

Crossrefs

Cf. A134407.

Programs

  • Maple
    maxn:=200:
    mb:=proc(n::integer)::integer;
      if isprime(n^2+1)=false then return n else return -1 fi;
    end proc:
    A134407 := Vector(maxn):
    for a from 1 to maxn do A134407[a]:= mb(a): end do:
    A134407s:=convert(A134407,'set') minus {-1}:
    A134407l:=convert(A134407s,'list'):
    for c from 1 to 200 do
      for z from 1 to 20 do
        A134407s := A134407s minus {c*z^2 + z + c}:
      end do:
    end do:
    A134407s;
  • PARI
    is(n)={!bittest(n,0)&&!isprime(n^2+1)&&!for(z=2,sqrtint(n),(n-z)%(z^2+1)||return)} \\ M. F. Hasler, Oct 04 2014

A241529 Positive numbers k such that k^2 + k + 41 is composite and there are no positive integers a,c,d such that k = c*a*z^2 + ((((d+2)*(1/3))*c-2)*a/d+1)*z + ((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2 - (((d-1)*(1/3))*c+1)/d)/c for an integer z.

Original entry on oeis.org

2887, 2969, 3056, 3220, 3365, 3464, 3565, 3611, 3719, 3746, 3814, 3836, 3874, 3879, 3955, 4142, 4147, 4211, 4277, 4371, 4403, 4483, 4564, 4572, 4661, 4730, 4813, 4881, 4888, 4902, 4906, 4965, 4982, 5132, 5175, 5208, 5410, 5431, 5509, 5527, 5564, 5624, 5669
Offset: 1

Author

Matt C. Anderson, Apr 27 2014

Keywords

Comments

This sequence has a restriction involving 4 variables. More composite cases are described with a better restrictive expression. The expression for k(a,c,d,z) will force k^2 + k + 41 to be either a fraction or a composite number.
The condition on k(a,c,d,z) was determined by quadratic curve fitting. It has been automated with the Maple Interactive() command. The ultimate motivation is to try to find a closed-from expression that generates all the composite cases of k^2 + k + 41 for integer k.
What is the smallest value of n where this sequence's a(n) < 2n? (For A194634, this value is 2358.) - J. Lowell, Feb 25 2019

References

  • John Stillwell, Elements of Number Theory, Springer, 2003, page 3.

Crossrefs

Cf. A007634, A055390, A201998, and with division, A235381.

Programs

  • Maple
    # Euler considered the prime values for n^2 + n + 41;
    # This is a 76 second calculation on a 2.93 GHz machine
    h := n^2+n+41;
    y := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c;
    y2 := subs(n = y, h);
    y3 := factor(y2);
    # note that y is an expression in 4 variables.
    # After a composition of functions, an algebraic factorization
    # can be observed in y3.  As long as y3 is an integer, it will
    # be composite.  This is because y3 factors and both factors
    # are integers bigger than one.
    maxn := 6000;
    A := {}:
    for n to maxn do
    g := n^2+n+41:
    if isprime(g) = false then A := `union`(A, {n}) end if :
    end do:
    # now the A set contains composite values of the form
    # n^2 + n + 41 less than maxn.
    c := 1: a := 1: d := 1: z := -1: p := 41:
    q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c:
    A2 := A:
    while q < maxn do
    while `and`(q < maxn, d < 100) do
    while q < maxn do while
    q < maxn do
    A2 := `minus`(A2, {q});
    A2 := `minus`(A2, {c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c});
    z := z+1;
    A2 := `minus`(A2, {c*a*z^2-((((d+2)*(1/3))*c-2)*a/d+1)*(1*z)+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c}); q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c
    end do;
    a := a+1; z := -1;
    q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c :
    end do;
    d := d+1: a := 1:
    q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c :
    end do:
    c := c+1: d := 1:
    q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c :
    end do:
    A2;
    # Matt C. Anderson, May 13 2014

A235381 Positive numbers n such that n^2 + n + 41 is composite and there are no positive integers c or d such that n = c*d*x^2 + ((d-2)*c + 1)*x + ((41*d^2 - d + 1)*c -1)/d for an integer x.

Original entry on oeis.org

611, 622, 630, 663, 679, 734, 758, 835, 867, 966, 978, 995, 1006, 1009, 1060, 1088, 1127, 1142, 1157, 1173, 1175, 1183, 1228, 1280, 1345, 1355, 1368, 1388, 1390, 1426, 1433, 1455, 1457, 1467, 1497, 1538, 1539, 1543, 1554, 1578, 1603, 1612, 1613, 1630, 1661
Offset: 1

Author

Matt C. Anderson, Jan 08 2014

Keywords

Comments

Restricting c and d so that c is congruent to 1 modulo d, we have that the composition of functions k(x) factors. k(x) = (1/d^2)*((1 + x*d^2 + x^2*d^2 - d - 2*x*d + 41*d^2)*(c^2*d^2*x^2 + x*d^2*c^2 + 41*c^2*d^2 + 2*x*d*c^2 - 2*x*d*c^2 + c*d - c^2*d + 1). So k(x) is the product of two integers greater than one and is thus composite.

Examples

			If d = 1 then n = c*n^2 + (1 - c)*x + 41*c  - 1. This is, up to a change of variables, equivalent to A201998.
		

References

  • John Stillwell, Elements of Number Theory, Springer 2003, page 3.

Crossrefs

Cf. A007634 (numbers n such that n^2 + n + 41 is composite).
Cf. A201998 and A241529 (similar subsequences of A007634).

Programs

  • Maple
    maxn := 1000;
    A := {};
    for n to maxn do
    g := n^2+n+41;
    if isprime(g) = false then
    A := `union`(A, {n}) :
    end if :
    end do :
    A:
    # the A list now contains Positive numbers n such that
    # n^2 + n + 41 is composite.
    # an upper limit for the number of iterations in the
    # triple nested while loops is 1000^3 or a billion.
    c:=1:
    d:=1:
    x:=-1:
    p:=41:
    q:=c*d*x^2+((d-2)*c+1)*x+((p*d^2-d+1)*c-1)/d;
    A2:=A:
    while q < maxn do
    while q < maxn do
    while q < maxn do
      A2:=A2 minus {q}:
      A2:=A2 minus {c*x^(2)+(c+1)*x+c*p}:
      A2:=A2 minus {c*d*x^2-((d-2)*c+1)*x+((p*d^2-d+1)*c-1)/d}:
      x:=x+1:
      q:=c*d*x^2+((d-2)*c+1)*x+((p*d^2-d+1)*c-1)/d:
    end do:
    c:=c+1:
    x:=-1:
    q:=c*d*x^2+((d-2)*c+1)*x+((p*d^2-d+1)*c-1)/d:
    end do:
    d:=d+1:
    c:=1:
    x:=-1:
    q:=c*d*x^2+((d-2)*c+1)*x+((p*d^2-d+1)*c-1)/d:
    end do:
    A2

Extensions

Corrected and edited by Matt C. Anderson, Jan 23 2014

A214947 Primes p such that p + (0, 6, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 48) are all prime.

Original entry on oeis.org

186460616596321, 7582919852522851, 31979851757518501, 49357906247864281, 79287805466244211, 85276506263432551, 89309633704415191, 89374633724310001, 98147762882334001, 136667406812471371, 137803293675931951, 152004604862224951, 157168285586497021, 159054409963103491
Offset: 1

Author

Matt C. Anderson, Jul 30 2012

Keywords

Comments

These are prime 13-tuplets.
All terms congruent to 991 (modulo 2310). - Matt C. Anderson, May 29 2015
All terms congruent to 14851 or 24091 (modulo 30030). - Matt C. Anderson, May 31 2015

Crossrefs

Cf. A186702.

Programs

  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,10**15, 6,12,16,18,22,28,30,36,40,42,46,48); # Dana Jacobsen, Oct 07 2015

A213646 Initial members of prime 11-tuplets: primes p such that p + (0, 4, 6, 10, 16, 18, 24, 28, 30, 34, 36) are all prime.

Original entry on oeis.org

1418575498573, 2118274828903, 4396774576273, 6368171154193, 6953798916913, 27899359258003, 28138953913303, 34460918582323, 40362095929003, 42023308245613, 44058461657443, 61062361183903, 76075560855373, 80114623697803, 84510447435493, 85160397055813, 90589658803723
Offset: 1

Author

Matt C. Anderson, Jun 17 2012

Keywords

Comments

All terms are congruent to 1003 (modulo 2310). - Matt C. Anderson, May 29 2015

Programs

  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e14, 4,6,10,16,18,24,28,30,34,36); # Dana Jacobsen, Oct 01 2015

A213647 Initial members of prime 11-tuplets: primes p such that p + (0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36) are all prime.

Original entry on oeis.org

11, 7908189600581, 10527733922591, 12640876669691, 38545620633251, 43564522846961, 60268613366231, 60596839933361, 71431649320301, 79405799458871, 109319665100531, 153467532929981, 171316998238271, 216585060731771, 254583955361621, 259685796605351, 268349524548221
Offset: 1

Author

Matt C. Anderson, Jun 17 2012

Keywords

Comments

0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36 are the first terms of A135311.
All terms are congruent to 11 (modulo 210). - Zak Seidov, Sep 15 2014
Subsequence of A202282. - Zak Seidov, Sep 15 2014
All terms, except the first one, are congruent to 1271 (modulo 2310). - Matt C. Anderson, May 29 2015

Crossrefs

Programs

  • Perl
    use ntheory ":all"; say for sieve_prime_cluster(1,1e14, 2,6,8,12,18,20,26,30,32,36); # Dana Jacobsen, Oct 01 2015

Extensions

a(89) corrected by Dana Jacobsen, Oct 01 2015