A201998 Positive numbers n such that n^2 + n + 41 is composite and there are no positive integers c such that n = c*x^2 + (c + 1)*x + c*41 for an integer x.
244, 249, 251, 266, 270, 295, 301, 336, 344, 389, 399, 407, 416, 418, 445, 449, 454, 466, 489, 494, 496, 500, 506, 527, 531, 545, 547, 563, 570, 571, 582, 583, 585, 611, 612, 620, 622, 624, 628, 630, 636, 652, 661, 662, 663, 679, 693, 699
Offset: 1
Keywords
References
- John Stillwell, Elements of Number Theory, Springer, 2003, page 3.
Links
- Matt C. Anderson A prime producing polynomial writeup
Programs
-
Maple
maxn:=1000: A:={}: for n from 1 to maxn do g:=n^2+n+41: if isprime(g)=false then A:=A union {n}: end if: end do: # The set A contains values n such that n^2+n+41 is composite and n < maxn. c:=1: x:=-1: p:=41: q:=c*x^2-(c+1)*x+c*p: A2:=A: while q < maxn do while q < maxn do A2:=A2 minus {q}: A2:=A2 minus {c*x^2+(c+1)*x+c*p}: x:=x+1: q:=c*x^2-(c+1)*x+c*p: end do: c:=c+1: x:=-1: q:=c*x^2-(c+1)*x+c*p: end do: A2;
-
Mathematica
Reap[For[n=1, n<700, n++, If[!PrimeQ[n^2+n+41], If[Reduce[c>0 && n == c*x^2+(c+1)*x+41*c , {c, x}, Integers] === False, Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Apr 30 2014 *)
Comments