cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007634 Numbers k such that k^2 + k + 41 is composite.

Original entry on oeis.org

40, 41, 44, 49, 56, 65, 76, 81, 82, 84, 87, 89, 91, 96, 102, 104, 109, 117, 121, 122, 123, 126, 127, 130, 136, 138, 140, 143, 147, 155, 159, 161, 162, 163, 164, 170, 172, 173, 178, 184, 185, 186, 187, 190, 201, 204, 205, 207, 208, 209, 213, 215, 216, 217
Offset: 1

Views

Author

Keywords

Comments

A subset of this sequence is shown in A055390. - Matt C. Anderson, Jan 05 2014
If prime p divides m^2+m+41, then m+p*j is in the sequence for all j >= 1. - Robert Israel, Nov 24 2017
Euler noted that the first 40 values of this polynomial, starting with k=0, are all primes. - Harvey P. Dale, Jul 25 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) ~ n. - Charles R Greathouse IV, Apr 25 2014

A055390 Terms of A007634 where n - 40 is not a square.

Original entry on oeis.org

81, 82, 84, 87, 91, 96, 102, 109, 117, 122, 123, 126, 127, 130, 136, 138, 143, 147, 155, 159, 162, 163, 164, 170, 172, 173, 178, 185, 186, 187, 190, 201, 204, 205, 207, 208, 213, 215, 216, 217, 218, 232, 234, 237, 239, 242, 244, 245, 246, 248, 249, 251, 252
Offset: 1

Views

Author

J. Lowell, Oct 08 2000

Keywords

Comments

Numbers n such that n^2 + n + 41 is composite and n - 40 is not a square. - Charles R Greathouse IV, Sep 14 2014
Note that if h(n) = n^2 + n + 41, and k(x) = x^2 + 40, then the composition of functions h(k(x)) has an algebraic factorization: h(k(x)) = (x^2 + 40)^2 + (x^2 + 40) + 41 = (x^2 + x + 41)*(x^2 - x + 41). Since both of the expressions in the above product are integers greater than 1, h(k(x)) is composite. - Matt C. Anderson, Oct 24 2012

Crossrefs

Cf. A007634 (numbers where n^2 + n + 41 is composite). A194634 (numbers in A007634 that are not in 3 parabolas). - Matt C. Anderson, Sep 26 2011
Cf. A201998.

Programs

  • Maple
    A007634 := {}:
    for n from 0 to 1000 do
    k := n^2+n+41:
    if isprime(k) = false then A007634 := union(A007634, {n}) end if:
    end do:
    pv1 := Vector(1000, j -> (j-1)^2+40):
    p1 := convert(pv1, set):
    A055390 := minus(A007634, p1); # Matt C. Anderson, Sep 26 2011
    remove(t -> issqr(t-40) or isprime(t^2+t+41), [$1..1000]); # Robert Israel, Nov 24 2017
  • Mathematica
    Select[Range[260],CompositeQ[#^2+#+41]&&!IntegerQ[Sqrt[#-40]]&] (* Harvey P. Dale, Oct 20 2015 *)
  • PARI
    is(n)=!isprime(n^2+n+41) && !issquare(n-40) \\ Charles R Greathouse IV, Sep 14 2014

Formula

a(n) ~ n. - Charles R Greathouse IV, Sep 14 2014

Extensions

More terms from David Wasserman, Mar 19 2002

A235381 Positive numbers n such that n^2 + n + 41 is composite and there are no positive integers c or d such that n = c*d*x^2 + ((d-2)*c + 1)*x + ((41*d^2 - d + 1)*c -1)/d for an integer x.

Original entry on oeis.org

611, 622, 630, 663, 679, 734, 758, 835, 867, 966, 978, 995, 1006, 1009, 1060, 1088, 1127, 1142, 1157, 1173, 1175, 1183, 1228, 1280, 1345, 1355, 1368, 1388, 1390, 1426, 1433, 1455, 1457, 1467, 1497, 1538, 1539, 1543, 1554, 1578, 1603, 1612, 1613, 1630, 1661
Offset: 1

Views

Author

Matt C. Anderson, Jan 08 2014

Keywords

Comments

Restricting c and d so that c is congruent to 1 modulo d, we have that the composition of functions k(x) factors. k(x) = (1/d^2)*((1 + x*d^2 + x^2*d^2 - d - 2*x*d + 41*d^2)*(c^2*d^2*x^2 + x*d^2*c^2 + 41*c^2*d^2 + 2*x*d*c^2 - 2*x*d*c^2 + c*d - c^2*d + 1). So k(x) is the product of two integers greater than one and is thus composite.

Examples

			If d = 1 then n = c*n^2 + (1 - c)*x + 41*c  - 1. This is, up to a change of variables, equivalent to A201998.
		

References

  • John Stillwell, Elements of Number Theory, Springer 2003, page 3.

Crossrefs

Cf. A007634 (numbers n such that n^2 + n + 41 is composite).
Cf. A201998 and A241529 (similar subsequences of A007634).

Programs

  • Maple
    maxn := 1000;
    A := {};
    for n to maxn do
    g := n^2+n+41;
    if isprime(g) = false then
    A := `union`(A, {n}) :
    end if :
    end do :
    A:
    # the A list now contains Positive numbers n such that
    # n^2 + n + 41 is composite.
    # an upper limit for the number of iterations in the
    # triple nested while loops is 1000^3 or a billion.
    c:=1:
    d:=1:
    x:=-1:
    p:=41:
    q:=c*d*x^2+((d-2)*c+1)*x+((p*d^2-d+1)*c-1)/d;
    A2:=A:
    while q < maxn do
    while q < maxn do
    while q < maxn do
      A2:=A2 minus {q}:
      A2:=A2 minus {c*x^(2)+(c+1)*x+c*p}:
      A2:=A2 minus {c*d*x^2-((d-2)*c+1)*x+((p*d^2-d+1)*c-1)/d}:
      x:=x+1:
      q:=c*d*x^2+((d-2)*c+1)*x+((p*d^2-d+1)*c-1)/d:
    end do:
    c:=c+1:
    x:=-1:
    q:=c*d*x^2+((d-2)*c+1)*x+((p*d^2-d+1)*c-1)/d:
    end do:
    d:=d+1:
    c:=1:
    x:=-1:
    q:=c*d*x^2+((d-2)*c+1)*x+((p*d^2-d+1)*c-1)/d:
    end do:
    A2

Extensions

Corrected and edited by Matt C. Anderson, Jan 23 2014

A241529 Positive numbers k such that k^2 + k + 41 is composite and there are no positive integers a,c,d such that k = c*a*z^2 + ((((d+2)*(1/3))*c-2)*a/d+1)*z + ((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2 - (((d-1)*(1/3))*c+1)/d)/c for an integer z.

Original entry on oeis.org

2887, 2969, 3056, 3220, 3365, 3464, 3565, 3611, 3719, 3746, 3814, 3836, 3874, 3879, 3955, 4142, 4147, 4211, 4277, 4371, 4403, 4483, 4564, 4572, 4661, 4730, 4813, 4881, 4888, 4902, 4906, 4965, 4982, 5132, 5175, 5208, 5410, 5431, 5509, 5527, 5564, 5624, 5669
Offset: 1

Views

Author

Matt C. Anderson, Apr 27 2014

Keywords

Comments

This sequence has a restriction involving 4 variables. More composite cases are described with a better restrictive expression. The expression for k(a,c,d,z) will force k^2 + k + 41 to be either a fraction or a composite number.
The condition on k(a,c,d,z) was determined by quadratic curve fitting. It has been automated with the Maple Interactive() command. The ultimate motivation is to try to find a closed-from expression that generates all the composite cases of k^2 + k + 41 for integer k.
What is the smallest value of n where this sequence's a(n) < 2n? (For A194634, this value is 2358.) - J. Lowell, Feb 25 2019

References

  • John Stillwell, Elements of Number Theory, Springer, 2003, page 3.

Crossrefs

Cf. A007634, A055390, A201998, and with division, A235381.

Programs

  • Maple
    # Euler considered the prime values for n^2 + n + 41;
    # This is a 76 second calculation on a 2.93 GHz machine
    h := n^2+n+41;
    y := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c;
    y2 := subs(n = y, h);
    y3 := factor(y2);
    # note that y is an expression in 4 variables.
    # After a composition of functions, an algebraic factorization
    # can be observed in y3.  As long as y3 is an integer, it will
    # be composite.  This is because y3 factors and both factors
    # are integers bigger than one.
    maxn := 6000;
    A := {}:
    for n to maxn do
    g := n^2+n+41:
    if isprime(g) = false then A := `union`(A, {n}) end if :
    end do:
    # now the A set contains composite values of the form
    # n^2 + n + 41 less than maxn.
    c := 1: a := 1: d := 1: z := -1: p := 41:
    q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c:
    A2 := A:
    while q < maxn do
    while `and`(q < maxn, d < 100) do
    while q < maxn do while
    q < maxn do
    A2 := `minus`(A2, {q});
    A2 := `minus`(A2, {c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c});
    z := z+1;
    A2 := `minus`(A2, {c*a*z^2-((((d+2)*(1/3))*c-2)*a/d+1)*(1*z)+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c}); q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c
    end do;
    a := a+1; z := -1;
    q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c :
    end do;
    d := d+1: a := 1:
    q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c :
    end do:
    c := c+1: d := 1:
    q := c*a*z^2+((((d+2)*(1/3))*c-2)*a/d+1)*z+((((367*d^2+d+1)*(1/9))*c^2-((d+2)*(1/3))*c+1)*a/d^2-(((d-1)*(1/3))*c+1)/d)/c :
    end do:
    A2;
    # Matt C. Anderson, May 13 2014
Showing 1-4 of 4 results.