A127412 Triangular table containing values of coefficients of the characteristic polynomial of a certain n x n circulant matrix, read by rows.
1, 1, -1, 1, -2, -3, 1, -3, -15, -18, 1, -4, -44, -144, -160, 1, -5, -100, -625, -1750, -1875, 1, -6, -195, -1980, -10044, -25920, -27216, 1, -7, -343, -5145, -40817, -184877, -453789, -470596, 1, -8, -560, -11648, -132608, -917504, -3866624, -9175040, -9437184, 1, -9, -864, -23814, -367416, -3582306
Offset: 0
Examples
The third row represents the coefficients of the characteristic polynomial of [1 2 3; 3 1 2; 2 3 1], which is x^3 - 3*x^2 - 15*x - 18. Thus the row reads 1,-3,-15,-18.
References
- Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).
Formula
First column is unity. Second column (A127407) is a(n+1) = n*(n+1)^2*(n+8)/(2*3!) for n>=1. Third column (A127408) is a(n+2) = n*(n+1)*(n+2)^3*(2n+14)/(2 * 4!) for n>=1. In general, k-th column is given by a(n+(k-1)) = n*(n+1)*(n+2)*...*(n+(k-1))^k*((k-1)n+S(k))/(2 * (k+1)!) for n>=1, where S(k) is the k-th term of A014206.
Comments