cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Paul Max Payton

Paul Max Payton's wiki page.

Paul Max Payton has authored 14 sequences. Here are the ten most recent ones:

A127412 Triangular table containing values of coefficients of the characteristic polynomial of a certain n x n circulant matrix, read by rows.

Original entry on oeis.org

1, 1, -1, 1, -2, -3, 1, -3, -15, -18, 1, -4, -44, -144, -160, 1, -5, -100, -625, -1750, -1875, 1, -6, -195, -1980, -10044, -25920, -27216, 1, -7, -343, -5145, -40817, -184877, -453789, -470596, 1, -8, -560, -11648, -132608, -917504, -3866624, -9175040, -9437184, 1, -9, -864, -23814, -367416, -3582306
Offset: 0

Author

Paul Max Payton, Feb 09 2007

Keywords

Comments

This is a lower triangular table.

Examples

			The third row represents the coefficients of the characteristic polynomial of [1 2 3; 3 1 2; 2 3 1], which is x^3 - 3*x^2 - 15*x - 18. Thus the row reads 1,-3,-15,-18.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Formula

First column is unity. Second column (A127407) is a(n+1) = n*(n+1)^2*(n+8)/(2*3!) for n>=1. Third column (A127408) is a(n+2) = n*(n+1)*(n+2)^3*(2n+14)/(2 * 4!) for n>=1. In general, k-th column is given by a(n+(k-1)) = n*(n+1)*(n+2)*...*(n+(k-1))^k*((k-1)n+S(k))/(2 * (k+1)!) for n>=1, where S(k) is the k-th term of A014206.

A127407 Negative value of coefficient of x^(n-2) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

3, 15, 44, 100, 195, 343, 560, 864, 1275, 1815, 2508, 3380, 4459, 5775, 7360, 9248, 11475, 14079, 17100, 20580, 24563, 29095, 34224, 40000, 46475, 53703, 61740, 70644, 80475, 91295, 103168, 116160, 130339, 145775, 162540, 180708, 200355
Offset: 2

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-2) exists only for n>1, so the sequence starts with a(2). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>1) is multiplied by -1.

Examples

			The circulant matrix for n = 5 is
[1 2 3 4 5]
[5 1 2 3 4]
[4 5 1 2 3]
[3 4 5 1 2]
[2 3 4 5 1]
The characteristic polynomial of this matrix is x^5 - 5*x^4 -100*x^3 - 625*x^2 - 1750*x - 1875. The coefficient of x^(n-2) is -100, hence a(5) = 100.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127408, A127409, A127410, A127411, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-2) : n in [2..38] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Magma
    [ (n-1) * n^2 * (n+7) / (2 * Factorial(3)) : n in [2..38] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Octave
    n * (n+1)^2 * (n+8) / (2 * factorial(3)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoeff(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-2)} \\ Klaus Brockhaus, Jan 27 2007
    
  • PARI
    a(n) = {(n^4+6*n^3-7*n^2)/(2*3!)} \\ Klaus Brockhaus, Jan 27 2007

Formula

a(n+1) = n*(n+1)^2*(n+8)/(2*3!) for n>=1.
a(n) = ((n-1)^4+10*(n-1)^3+17*(n-1)^2+8*(n-1))/(2*3!) for n>=2.
a(n) = (n^2*(-7+6*n+n^2))/12. G.f.: x^2*(3-x^2)/(1-x)^5. - Colin Barker, May 13 2012

Extensions

Edited by Klaus Brockhaus, Jan 27 2007

A127409 Negative value of coefficient of x^(n-4) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

160, 1750, 10044, 40817, 132608, 367416, 903000, 2020458, 4191264, 8168446, 15107092, 26719875, 45473792, 74834816, 119567664, 186098388, 282948000, 421245846, 615331948, 883458037, 1248597504, 1739375000, 2391126920
Offset: 4

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-4) exists only for n>3, so the sequence starts with a(4). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>3) is multiplied by -1.

Examples

			The circulant matrix for n = 5 is
[1 2 3 4 5]
[5 1 2 3 4]
[4 5 1 2 3]
[3 4 5 1 2]
[2 3 4 5 1]
The characteristic polynomial of this matrix is x^5 - 5*x^4 -100*x^3 - 625*x^2 - 1750*x - 1875. The coefficient of x^(n-4) is -1750, hence a(5) = 1750.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127407, A127408, A127410, A127411, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-4) : n in [4..26] ];  // Klaus Brockhaus, Jan 27 2007
    
  • Magma
    [ (n-3)*(n-2)*(n-1)*n^4*(3*n+13) / (2 * Factorial(5)) : n in [4..26] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Octave
    n * (n+1) * (n+2) * (n+3)^4 * (3*n + 22) / (2 * factorial(5)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoeff(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-4)} \\ Klaus Brockhaus, Jan 27 2007
    
  • PARI
    a(n) = {(3*n^8 - 5*n^7 - 45*n^6 + 125*n^5 - 78*n^4)/(2*5!)} \\ Klaus Brockhaus, Jan 27 2007

Formula

a(n+3) = n*(n+1)*(n+2)*(n+3)^4*(3*n+22)/(2*5!) for n>=1.
a(n) = (3*n^8-5*n^7-45*n^6+125*n^5-78*n^4)/(2*5!) for n>=4.
G.f.: x^4*(160+310*x+54*x^2-19*x^3-x^4)/(1-x)^9. - Colin Barker, May 13 2012

Extensions

Edited, corrected and extended by Klaus Brockhaus, Jan 27 2007

A127408 Negative value of coefficient of x^(n-3) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

18, 144, 625, 1980, 5145, 11648, 23814, 45000, 79860, 134640, 217503, 338884, 511875, 752640, 1080860, 1520208, 2098854, 2850000, 3812445, 5031180, 6558013, 8452224, 10781250, 13621400, 17058600, 21189168, 26120619, 31972500, 38877255
Offset: 3

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-3) exists only for n>2, so the sequence starts with a(3). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>2) is multiplied by -1.

Examples

			The circulant matrix for n = 5 is
[1 2 3 4 5]
[5 1 2 3 4]
[4 5 1 2 3]
[3 4 5 1 2]
[2 3 4 5 1]
The characteristic polynomial of this matrix is x^5 - 5*x^4 -100*x^3 - 625*x^2 - 1750*x - 1875. The coefficient of x^(n-3) is -625, hence a(5) = 625.
		

References

  • Daniel Zwillinger, Ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127407, A127409, A127410, A127411, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-3) : n in [3..31] ] ; // Klaus Brockhaus, Jan 26 2007
    
  • Magma
    [ (n-2) * (n-1) * n^3 * (2*(n-2) + 14) / (2 * Factorial(4)) : n in [3..31] ] ; // Klaus Brockhaus, Jan 26 2007
    
  • Octave
    n * (n+1) * (n+2)^3 * (2*n + 14) / (2 * factorial(4)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoef(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-3)} \\ Klaus Brockhaus, Jan 26 2007
    
  • PARI
    a(n) = {(n^6+2*n^5-13*n^4+10*n^3)/4!} \\ Klaus Brockhaus, Jan 26 2007

Formula

a(n+2) = n*(n+1)*(n+2)^3*(2n+14)/(2 * 4!) for n>=1.
a(n) = (n^6+2*n^5-13*n^4+10*n^3)/4! for n>=3.
G.f.: x^3*(3-x)*(6+8*x+x^2)/(1-x)^7. - Colin Barker, May 13 2012

Extensions

Edited and extended by Klaus Brockhaus, Jan 26 2007

A127411 Negative value of coefficient of x^(n-6) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

27216, 453789, 3866624, 22674816, 103500000, 393286542, 1297410048, 3822832728, 10267329072, 25518796875, 59378761728, 130535973152, 273106821312, 547049504268, 1054272000000, 1962916959024, 3543150344976, 6218839661001, 10640820731904, 17789062500000
Offset: 6

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-6) exists only for n>5, so the sequence starts with a(6). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>5) is multiplied by -1.

Examples

			The circulant matrix for n = 6 is
[1 2 3 4 5 6]
[6 1 2 3 4 5]
[5 6 1 2 3 4]
[4 5 6 1 2 3]
[3 4 5 6 1 2]
[2 3 4 5 6 1]
The characteristic polynomial of this matrix is x^6 - 6*x^5 -196*x^4 - 1980*x^3 - 10044*x^2 - 25920*x - 27216. The coefficient of x^(n-6) is -27216, hence a(6) = 27216.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127407, A127408, A127409, A127410, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-6) : n in [6..22] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Magma
    [ (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*n^6*(5*n+19) / (2*Factorial(7)) : n in [6..22] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Octave
    n * (n+1) * (n+2) * (n+3) * (n+4) * (n+5)^6 * (5*n + 44) / (2*factorial(7)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoef(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-6)} \\ Klaus Brockhaus, Jan 27 2007
    
  • PARI
    a(n) = {(5*n^12-56*n^11+140*n^10+490*n^9-2905*n^8+4606*n^7-2280*n^6)/(2*7!)} \\ Klaus Brockhaus, Jan 27 2007

Formula

a(n+5) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)^6*(5*n+44)/(2*7!) for n>=1.
a(n) = (5*n^12 - 56*n^11 + 140*n^10 + 490*n^9 - 2905*n^8 + 4606*n^7 - 2280*n^6)/(2*7!) for n>=6.
G.f.: x^6*(x^6 + 131*x^5 + 150*x^4 - 20470*x^3 - 90215*x^2 - 99981*x - 27216)/(x-1)^13. - Colin Barker, May 29 2012

Extensions

Edited by Klaus Brockhaus, Jan 27 2007

A127410 Negative value of coefficient of x^(n-5) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

1875, 25920, 184877, 917504, 3582306, 11760000, 33820710, 87588864, 208295373, 461452992, 962836875, 1908408320, 3617795636, 6595852032, 11617856508, 19845120000, 32979115575, 53463778368, 84747328281, 131616866304, 200621093750, 300598812800, 443333396610
Offset: 5

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-5) exists only for n>4, so the sequence starts with a(5). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>4) is multiplied by -1.

Examples

			The circulant matrix for n = 5 is
[1 2 3 4 5]
[5 1 2 3 4]
[4 5 1 2 3]
[3 4 5 1 2]
[2 3 4 5 1]
The characteristic polynomial of this matrix is x^5 - 5*x^4 -100*x^3 - 625*x^2 - 1750*x - 1875. The coefficient of x^(n-5) is -1875, hence a(5) = 1875.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127407, A127408, A127409, A127411, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-5) : n in [5..24] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Magma
    [ (n-4)*(n-3)*(n-2)*(n-1)*n^5*(4*n+16) / (2*Factorial(6)) : n in [5..24] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Octave
    n * (n+1) * (n+2) * (n+3) * (n+4)^5 * (4*n + 32) / (2 * factorial(6)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoef(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-5)} \\ Klaus Brockhaus, Jan 27 2007
    
  • PARI
    a(n) = {(4*n^10-24*n^9-20*n^8+360*n^7-704*n^6+384*n^5)/(2*6!)} \\ Klaus Brockhaus, Jan 27 2007

Formula

a(n+4) = n*(n+1)*(n+2)*(n+3)*(n+4)^5*(4*n+32)/(2*6!) for n>=1.
a(n) = (4*n^10-24*n^9-20*n^8+360*n^7-704*n^6+384*n^5)/(2*6!) for n>=5.
G.f.: x^5*(x^5+53*x^4-82*x^3-2882*x^2-5295*x-1875)/(x-1)^11. [Colin Barker, May 29 2012]

Extensions

Edited by Klaus Brockhaus, Jan 27 2007

A112460 Absolute value of coefficient of term [x^(n-4)] in characteristic polynomial of maximum matrix A of size n X n, where n >= 4. Maximum matrix A(i,j) is MAX(i,j), where indices i and j run from 1 to n.

Original entry on oeis.org

4, 39, 207, 795, 2475, 6633, 15873, 34749, 70785, 135850, 247962, 433602, 730626, 1191870, 1889550, 2920566, 4412826, 6532713, 9493825, 13567125, 19092645, 26492895, 36288135, 49113675, 65739375, 87091524, 114277284, 148611892, 191648820, 245213100, 311438028
Offset: 4

Author

Paul Max Payton, Sep 23 2005

Keywords

Programs

  • Mathematica
    Drop[Table[(7n^8+4n^7-98n^6-56n^5+343n^4+196n^3-252n^2-144n)/40320,{n,40}],3] (* Harvey P. Dale, Dec 15 2013 *)

Formula

a(n) = (n-3)*(n-2)*(n-1)*n*(n+1)*(n+2)*(n+3)*(7*n+4)/8!.
G.f.: x^4*(4+3*x)/(1-x)^9. - Colin Barker, Mar 28 2012

A112459 Absolute value of coefficient of term [x^(n-3)] in characteristic polynomial of maximum matrix A of size n X n, where n >= 3. Maximum matrix A(i,j) is MAX(i,j), where indices i and j run from 1 to n.

Original entry on oeis.org

3, 23, 98, 308, 798, 1806, 3696, 6996, 12441, 21021, 34034, 53144, 80444, 118524, 170544, 240312, 332367, 452067
Offset: 3

Author

Paul Max Payton, Sep 23 2005

Keywords

Formula

a(n) = n*(n^2-4)*(n^2-1)*(5*n+3)/6!.
G.f.: x^3*(3+2*x)/(1-x)^7. - Colin Barker, Mar 28 2012

Extensions

Offset changed from 1 to 3 and formulas adapted by Bruno Berselli, Mar 29 2012

A112464 Absolute value of coefficient of term [x^(n-8)] in characteristic polynomial of maximum matrix A of size n X n, where n >= 8. Maximum matrix A(i,j) is MAX(i,j), where indices i and j run from 1 to n.

Original entry on oeis.org

8, 143, 1343, 8823, 45543, 196707, 739347, 2483547, 7599867, 21492097, 56794705, 141485305, 334639305, 755863605, 1638428805, 3422280285, 6912424485, 13541987610, 25799313210, 47907161610, 86882479530, 154161302130, 268050218130, 457369908930, 766795640130
Offset: 8

Author

Paul Max Payton, Sep 23 2005

Keywords

Programs

  • Mathematica
    Table[(Times@@(n+Range[0,14])(15n+113))/16!,{n,30}] (* or *) CoefficientList[ Series[ (-8-7 x)/(-1+x)^17,{x,0,30}],x] (* Harvey P. Dale, Jul 24 2011 *)

Formula

a(n) = ((15n+8)/16!) * Product_{i=-7..7} (n+i).
G.f.: x^8*(8+7*x)/(1-x)^17. - Harvey P. Dale, Jul 24 2011

Extensions

More terms from Harvey P. Dale, Jul 24 2011
Offset changed from 0 to 8, formulas and b-file adapted by Bruno Berselli, Mar 29 2012

A112463 Absolute value of coefficient of term [x^(n-7)] in characteristic polynomial of maximum matrix A of size n X n, where n >= 7. Maximum matrix A(i,j) is MAX(i,j), where indices i and j run from 1 to n.

Original entry on oeis.org

7, 111, 930, 5480, 25500, 99756, 341088, 1046520, 2936070, 7638950, 18631932, 42969336, 94348300, 198354300, 401166000, 783610920, 1483311285, 2728813725, 4891144350, 8560278000, 14656684680, 24591569640, 40493836800, 65527390800, 104329399500, 163608855372
Offset: 7

Author

Paul Max Payton, Sep 23 2005

Keywords

Formula

a(n) = ((13*n+7)/14!) * Product_{i=-6..6} (n+i).
G.f.: x^7*(7+6*x)/(1-x)^15. - Colin Barker, Mar 28 2012

Extensions

Offset changed by Alois P. Heinz, Mar 28 2012