cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A127410 Negative value of coefficient of x^(n-5) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

1875, 25920, 184877, 917504, 3582306, 11760000, 33820710, 87588864, 208295373, 461452992, 962836875, 1908408320, 3617795636, 6595852032, 11617856508, 19845120000, 32979115575, 53463778368, 84747328281, 131616866304, 200621093750, 300598812800, 443333396610
Offset: 5

Views

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-5) exists only for n>4, so the sequence starts with a(5). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>4) is multiplied by -1.

Examples

			The circulant matrix for n = 5 is
[1 2 3 4 5]
[5 1 2 3 4]
[4 5 1 2 3]
[3 4 5 1 2]
[2 3 4 5 1]
The characteristic polynomial of this matrix is x^5 - 5*x^4 -100*x^3 - 625*x^2 - 1750*x - 1875. The coefficient of x^(n-5) is -1875, hence a(5) = 1875.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127407, A127408, A127409, A127411, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-5) : n in [5..24] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Magma
    [ (n-4)*(n-3)*(n-2)*(n-1)*n^5*(4*n+16) / (2*Factorial(6)) : n in [5..24] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Octave
    n * (n+1) * (n+2) * (n+3) * (n+4)^5 * (4*n + 32) / (2 * factorial(6)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoef(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-5)} \\ Klaus Brockhaus, Jan 27 2007
    
  • PARI
    a(n) = {(4*n^10-24*n^9-20*n^8+360*n^7-704*n^6+384*n^5)/(2*6!)} \\ Klaus Brockhaus, Jan 27 2007

Formula

a(n+4) = n*(n+1)*(n+2)*(n+3)*(n+4)^5*(4*n+32)/(2*6!) for n>=1.
a(n) = (4*n^10-24*n^9-20*n^8+360*n^7-704*n^6+384*n^5)/(2*6!) for n>=5.
G.f.: x^5*(x^5+53*x^4-82*x^3-2882*x^2-5295*x-1875)/(x-1)^11. [Colin Barker, May 29 2012]

Extensions

Edited by Klaus Brockhaus, Jan 27 2007

A127411 Negative value of coefficient of x^(n-6) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

27216, 453789, 3866624, 22674816, 103500000, 393286542, 1297410048, 3822832728, 10267329072, 25518796875, 59378761728, 130535973152, 273106821312, 547049504268, 1054272000000, 1962916959024, 3543150344976, 6218839661001, 10640820731904, 17789062500000
Offset: 6

Views

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-6) exists only for n>5, so the sequence starts with a(6). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>5) is multiplied by -1.

Examples

			The circulant matrix for n = 6 is
[1 2 3 4 5 6]
[6 1 2 3 4 5]
[5 6 1 2 3 4]
[4 5 6 1 2 3]
[3 4 5 6 1 2]
[2 3 4 5 6 1]
The characteristic polynomial of this matrix is x^6 - 6*x^5 -196*x^4 - 1980*x^3 - 10044*x^2 - 25920*x - 27216. The coefficient of x^(n-6) is -27216, hence a(6) = 27216.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127407, A127408, A127409, A127410, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-6) : n in [6..22] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Magma
    [ (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*n^6*(5*n+19) / (2*Factorial(7)) : n in [6..22] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Octave
    n * (n+1) * (n+2) * (n+3) * (n+4) * (n+5)^6 * (5*n + 44) / (2*factorial(7)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoef(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-6)} \\ Klaus Brockhaus, Jan 27 2007
    
  • PARI
    a(n) = {(5*n^12-56*n^11+140*n^10+490*n^9-2905*n^8+4606*n^7-2280*n^6)/(2*7!)} \\ Klaus Brockhaus, Jan 27 2007

Formula

a(n+5) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)^6*(5*n+44)/(2*7!) for n>=1.
a(n) = (5*n^12 - 56*n^11 + 140*n^10 + 490*n^9 - 2905*n^8 + 4606*n^7 - 2280*n^6)/(2*7!) for n>=6.
G.f.: x^6*(x^6 + 131*x^5 + 150*x^4 - 20470*x^3 - 90215*x^2 - 99981*x - 27216)/(x-1)^13. - Colin Barker, May 29 2012

Extensions

Edited by Klaus Brockhaus, Jan 27 2007

A127407 Negative value of coefficient of x^(n-2) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

3, 15, 44, 100, 195, 343, 560, 864, 1275, 1815, 2508, 3380, 4459, 5775, 7360, 9248, 11475, 14079, 17100, 20580, 24563, 29095, 34224, 40000, 46475, 53703, 61740, 70644, 80475, 91295, 103168, 116160, 130339, 145775, 162540, 180708, 200355
Offset: 2

Views

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-2) exists only for n>1, so the sequence starts with a(2). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>1) is multiplied by -1.

Examples

			The circulant matrix for n = 5 is
[1 2 3 4 5]
[5 1 2 3 4]
[4 5 1 2 3]
[3 4 5 1 2]
[2 3 4 5 1]
The characteristic polynomial of this matrix is x^5 - 5*x^4 -100*x^3 - 625*x^2 - 1750*x - 1875. The coefficient of x^(n-2) is -100, hence a(5) = 100.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127408, A127409, A127410, A127411, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-2) : n in [2..38] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Magma
    [ (n-1) * n^2 * (n+7) / (2 * Factorial(3)) : n in [2..38] ]; // Klaus Brockhaus, Jan 27 2007
    
  • Octave
    n * (n+1)^2 * (n+8) / (2 * factorial(3)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoeff(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-2)} \\ Klaus Brockhaus, Jan 27 2007
    
  • PARI
    a(n) = {(n^4+6*n^3-7*n^2)/(2*3!)} \\ Klaus Brockhaus, Jan 27 2007

Formula

a(n+1) = n*(n+1)^2*(n+8)/(2*3!) for n>=1.
a(n) = ((n-1)^4+10*(n-1)^3+17*(n-1)^2+8*(n-1))/(2*3!) for n>=2.
a(n) = (n^2*(-7+6*n+n^2))/12. G.f.: x^2*(3-x^2)/(1-x)^5. - Colin Barker, May 13 2012

Extensions

Edited by Klaus Brockhaus, Jan 27 2007

A127408 Negative value of coefficient of x^(n-3) in the characteristic polynomial of a certain n X n integer circulant matrix.

Original entry on oeis.org

18, 144, 625, 1980, 5145, 11648, 23814, 45000, 79860, 134640, 217503, 338884, 511875, 752640, 1080860, 1520208, 2098854, 2850000, 3812445, 5031180, 6558013, 8452224, 10781250, 13621400, 17058600, 21189168, 26120619, 31972500, 38877255
Offset: 3

Views

Author

Paul Max Payton, Jan 14 2007

Keywords

Comments

The n X n circulant matrix used here has first row 1 through n and each successive row is a circular rotation of the previous row to the right by one element.
The coefficient of x^(n-3) exists only for n>2, so the sequence starts with a(3). In order to obtain a nonnegative sequence the coefficient (which is negative for all n>2) is multiplied by -1.

Examples

			The circulant matrix for n = 5 is
[1 2 3 4 5]
[5 1 2 3 4]
[4 5 1 2 3]
[3 4 5 1 2]
[2 3 4 5 1]
The characteristic polynomial of this matrix is x^5 - 5*x^4 -100*x^3 - 625*x^2 - 1750*x - 1875. The coefficient of x^(n-3) is -625, hence a(5) = 625.
		

References

  • Daniel Zwillinger, Ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Cf. A000142 (factorial numbers), A014206 (n^2+n+2), A127407, A127409, A127410, A127411, A127412.

Programs

  • Magma
    [ -Coefficient(CharacteristicPolynomial(Matrix(IntegerRing(), n, n, [< i, j, 1 + (j-i) mod n > : i, j in [1..n] ] )), n-3) : n in [3..31] ] ; // Klaus Brockhaus, Jan 26 2007
    
  • Magma
    [ (n-2) * (n-1) * n^3 * (2*(n-2) + 14) / (2 * Factorial(4)) : n in [3..31] ] ; // Klaus Brockhaus, Jan 26 2007
    
  • Octave
    n * (n+1) * (n+2)^3 * (2*n + 14) / (2 * factorial(4)); % Paul Max Payton, Jan 14 2007
    
  • PARI
    a(n) = {-polcoef(charpoly(matrix(n,n,i,j,(j-i)%n+1),x),n-3)} \\ Klaus Brockhaus, Jan 26 2007
    
  • PARI
    a(n) = {(n^6+2*n^5-13*n^4+10*n^3)/4!} \\ Klaus Brockhaus, Jan 26 2007

Formula

a(n+2) = n*(n+1)*(n+2)^3*(2n+14)/(2 * 4!) for n>=1.
a(n) = (n^6+2*n^5-13*n^4+10*n^3)/4! for n>=3.
G.f.: x^3*(3-x)*(6+8*x+x^2)/(1-x)^7. - Colin Barker, May 13 2012

Extensions

Edited and extended by Klaus Brockhaus, Jan 26 2007

A127412 Triangular table containing values of coefficients of the characteristic polynomial of a certain n x n circulant matrix, read by rows.

Original entry on oeis.org

1, 1, -1, 1, -2, -3, 1, -3, -15, -18, 1, -4, -44, -144, -160, 1, -5, -100, -625, -1750, -1875, 1, -6, -195, -1980, -10044, -25920, -27216, 1, -7, -343, -5145, -40817, -184877, -453789, -470596, 1, -8, -560, -11648, -132608, -917504, -3866624, -9175040, -9437184, 1, -9, -864, -23814, -367416, -3582306
Offset: 0

Views

Author

Paul Max Payton, Feb 09 2007

Keywords

Comments

This is a lower triangular table.

Examples

			The third row represents the coefficients of the characteristic polynomial of [1 2 3; 3 1 2; 2 3 1], which is x^3 - 3*x^2 - 15*x - 18. Thus the row reads 1,-3,-15,-18.
		

References

  • Daniel Zwillinger, ed., "CRC Standard Mathematical Tables and Formulae", 31st Edition, ISBN 1-58488-291, Section 2.6.2.25 (page 141) and Section 2.6.11.3 (page 152).

Crossrefs

Formula

First column is unity. Second column (A127407) is a(n+1) = n*(n+1)^2*(n+8)/(2*3!) for n>=1. Third column (A127408) is a(n+2) = n*(n+1)*(n+2)^3*(2n+14)/(2 * 4!) for n>=1. In general, k-th column is given by a(n+(k-1)) = n*(n+1)*(n+2)*...*(n+(k-1))^k*((k-1)n+S(k))/(2 * (k+1)!) for n>=1, where S(k) is the k-th term of A014206.
Showing 1-5 of 5 results.