cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A112461 Absolute value of coefficient of term [x^(n-5)] in characteristic polynomial of maximum matrix A of size n X n, where n >= 5. Maximum matrix A(i,j) is MAX(i,j), where indices i and j run from 1 to n.

Original entry on oeis.org

5, 59, 374, 1694, 6149, 19019, 52052, 129272, 296582, 636922, 1293292, 2502604, 4644094, 8306914, 14382544, 24188824, 39633715, 63428365, 99360690, 152642490, 230345115, 341940885, 499969860, 720854160, 1025884860, 1442409540, 2005251864, 2758398104
Offset: 5

Views

Author

Paul Max Payton, Sep 23 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(9n+5)/10! Product[n+i,{i,-4,4}],{n,5,40}] (* Harvey P. Dale, Apr 26 2019 *)

Formula

a(n) = ((9n+5)/10!) * Product_{i=-4..4} (n+i).
G.f.: x^5*(5+4*x)/(1-x)^11. - Colin Barker, Mar 28 2012

Extensions

Offset changed from 1 to 5, formulas and b-file adapted by Bruno Berselli, Mar 29 2012

A112462 Absolute value of coefficient of term [x^(n-6)] in characteristic polynomial of maximum matrix A of size n X n, where n >= 6. Maximum matrix A(i,j) is MAX(i,j), where indices i and j run from 1 to n.

Original entry on oeis.org

6, 83, 611, 3185, 13195, 46228, 142324, 395148, 1007760, 2393430, 5349526, 11345698, 22985326, 44722580, 83947700, 152591660, 269449830, 463484385, 778439025, 1279189275, 2060359665, 3257868120, 5064210840, 7748481000, 11682325200, 17373286476, 25507265868
Offset: 6

Views

Author

Paul Max Payton, Sep 23 2005

Keywords

Crossrefs

Formula

a(n) = ((11n+6)/12!) * Product_{i=-5..5} (n+i).
G.f.: x^6*(6+5*x)/(1-x)^13. - Colin Barker, Mar 28 2012

Extensions

Offset changed from 1 to 6, formulas and b-file adapted by Bruno Berselli, Mar 29 2012

A112464 Absolute value of coefficient of term [x^(n-8)] in characteristic polynomial of maximum matrix A of size n X n, where n >= 8. Maximum matrix A(i,j) is MAX(i,j), where indices i and j run from 1 to n.

Original entry on oeis.org

8, 143, 1343, 8823, 45543, 196707, 739347, 2483547, 7599867, 21492097, 56794705, 141485305, 334639305, 755863605, 1638428805, 3422280285, 6912424485, 13541987610, 25799313210, 47907161610, 86882479530, 154161302130, 268050218130, 457369908930, 766795640130
Offset: 8

Views

Author

Paul Max Payton, Sep 23 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(Times@@(n+Range[0,14])(15n+113))/16!,{n,30}] (* or *) CoefficientList[ Series[ (-8-7 x)/(-1+x)^17,{x,0,30}],x] (* Harvey P. Dale, Jul 24 2011 *)

Formula

a(n) = ((15n+8)/16!) * Product_{i=-7..7} (n+i).
G.f.: x^8*(8+7*x)/(1-x)^17. - Harvey P. Dale, Jul 24 2011

Extensions

More terms from Harvey P. Dale, Jul 24 2011
Offset changed from 0 to 8, formulas and b-file adapted by Bruno Berselli, Mar 29 2012

A112459 Absolute value of coefficient of term [x^(n-3)] in characteristic polynomial of maximum matrix A of size n X n, where n >= 3. Maximum matrix A(i,j) is MAX(i,j), where indices i and j run from 1 to n.

Original entry on oeis.org

3, 23, 98, 308, 798, 1806, 3696, 6996, 12441, 21021, 34034, 53144, 80444, 118524, 170544, 240312, 332367, 452067
Offset: 3

Views

Author

Paul Max Payton, Sep 23 2005

Keywords

Crossrefs

Formula

a(n) = n*(n^2-4)*(n^2-1)*(5*n+3)/6!.
G.f.: x^3*(3+2*x)/(1-x)^7. - Colin Barker, Mar 28 2012

Extensions

Offset changed from 1 to 3 and formulas adapted by Bruno Berselli, Mar 29 2012

A112460 Absolute value of coefficient of term [x^(n-4)] in characteristic polynomial of maximum matrix A of size n X n, where n >= 4. Maximum matrix A(i,j) is MAX(i,j), where indices i and j run from 1 to n.

Original entry on oeis.org

4, 39, 207, 795, 2475, 6633, 15873, 34749, 70785, 135850, 247962, 433602, 730626, 1191870, 1889550, 2920566, 4412826, 6532713, 9493825, 13567125, 19092645, 26492895, 36288135, 49113675, 65739375, 87091524, 114277284, 148611892, 191648820, 245213100, 311438028
Offset: 4

Views

Author

Paul Max Payton, Sep 23 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Drop[Table[(7n^8+4n^7-98n^6-56n^5+343n^4+196n^3-252n^2-144n)/40320,{n,40}],3] (* Harvey P. Dale, Dec 15 2013 *)

Formula

a(n) = (n-3)*(n-2)*(n-1)*n*(n+1)*(n+2)*(n+3)*(7*n+4)/8!.
G.f.: x^4*(4+3*x)/(1-x)^9. - Colin Barker, Mar 28 2012
Showing 1-5 of 5 results.