cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Yalcin Aktar

Yalcin Aktar's wiki page.

Yalcin Aktar has authored 33 sequences. Here are the ten most recent ones:

A202301 Next prime after the partial sum of the first n primes.

Original entry on oeis.org

3, 7, 11, 19, 29, 43, 59, 79, 101, 131, 163, 199, 239, 283, 331, 383, 443, 503, 569, 641, 719, 797, 877, 967, 1061, 1163, 1277, 1373, 1481, 1597, 1721, 1861, 1993, 2129, 2281, 2437, 2591, 2749, 2917, 3089, 3271, 3449, 3643, 3833, 4049, 4229, 4441, 4663, 4889
Offset: 1

Author

Yalcin Aktar, Jan 11 2012

Keywords

Crossrefs

Programs

  • Maple
    A007504 := proc(n)
            add( ithprime(k),k=1..n) ;
    end proc:
    A202301 := proc(n)
            nextprime(A007504(n)) ;
    end proc:
    seq(A202301(n),n=1..20) ; # R. J. Mathar, Jan 29 2012
  • Mathematica
    s = 0; Table[s = s + Prime[n]; NextPrime[s], {n, 100}] (* T. D. Noe, Apr 10 2012 *)
    NextPrime[#]&/@Accumulate[Prime[Range[50]]] (* Harvey P. Dale, Feb 01 2015 *)

Formula

a(n) = A151800(A007504(n)). - R. J. Mathar, Jan 29 2012 [corrected by Georg Fischer, Dec 19 2020]

A203817 Decimal expansion of gamma*Pi.

Original entry on oeis.org

1, 8, 1, 3, 3, 7, 6, 4, 9, 2, 3, 9, 1, 6, 0, 3, 4, 9, 9, 6, 1, 3, 1, 3, 4, 5, 3, 1, 2, 7, 1, 0, 4, 0, 0, 1, 9, 1, 0, 7, 6, 6, 4, 1, 8, 1, 3, 7, 2, 6, 0, 0, 8, 0, 8, 6, 3, 6, 1, 4, 8, 0, 7, 8, 1, 9, 7, 5, 0, 9, 2, 2, 9, 6, 3, 0, 0, 4, 2, 0, 3, 8, 6, 4, 5, 3, 4, 5, 5, 0, 3, 8, 7, 1, 5, 5, 0, 4, 4
Offset: 1

Author

Yalcin Aktar, Jan 06 2012

Keywords

Examples

			1.8133764923916034996131345312710400191076641813726...
		

Crossrefs

Cf. A001620 (gamma), A000796 (Pi).

Programs

  • Magma
    R:= RealField(100); EulerGamma(R)*Pi(R); // G. C. Greubel, Sep 06 2018
  • Maple
    evalf(gamma*Pi) ;
  • Mathematica
    RealDigits[EulerGamma*Pi, 10, 100][[1]] (* G. C. Greubel, Sep 06 2018 *)
  • PARI
    Euler*Pi
    

Formula

Equals -2 * Integral_{x=0..oo} log(x)*sin(x)/x dx. - Amiram Eldar, Aug 18 2020

A203816 Decimal expansion of e*gamma*Pi, where gamma is Euler's constant.

Original entry on oeis.org

4, 9, 2, 9, 2, 6, 8, 3, 6, 7, 4, 2, 2, 8, 9, 7, 8, 9, 1, 5, 2, 6, 3, 0, 4, 7, 9, 8, 0, 3, 4, 2, 3, 1, 0, 2, 6, 2, 8, 6, 5, 2, 9, 9, 2, 3, 3, 2, 6, 6, 0, 7, 6, 5, 8, 0, 3, 2, 2, 6, 6, 6, 4, 7, 3, 9, 9, 9, 8, 6, 5, 6, 5, 6, 8, 1, 1, 5, 7, 3, 9, 6, 7, 3, 3, 5, 6, 2, 5, 5, 7, 9, 6, 1, 7, 9, 8, 6
Offset: 1

Author

Yalcin Aktar, Jan 06 2012

Keywords

Examples

			4.929268367422897891526304798034231...
		

Crossrefs

Cf. A001620 (Euler's constant), A019609 (e*Pi).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Exp(1)*Pi(R)*EulerGamma(R); // G. C. Greubel, Sep 03 2018
  • Mathematica
    RealDigits[E*EulerGamma*Pi, 10, 105][[1]] (* Alonso del Arte, Jan 06 2012 *)
  • PARI
    exp(1)*Euler*Pi \\ Charles R Greathouse IV, Jan 15 2012
    

A193418 Expansion of x*(x^2+x-1)/(3*x^6-4*x^5+x^4-3*x^2+4*x-1).

Original entry on oeis.org

1, 3, 8, 23, 69, 206, 616, 1846, 5537, 16609, 49824, 149469, 448405, 1345212, 4035632, 12106892, 36320673, 108962015, 326886040, 980658115, 2941974341, 8825923018, 26477769048, 79433307138, 238299921409, 714899764221, 2144699292656
Offset: 1

Author

Yalcin Aktar, Jul 26 2011

Keywords

Comments

Conjecture: log(A005960-a(n)) ~ (log(2)*(2*n-11)).

Crossrefs

Cf. A005960.

Formula

a(n) = b(n+1,3)-b(n+1,4) with b(n,c) = sum(floor(3^m/2^c), m=1..n).
G.f.: x*(x^2+x-1) / (3*x^6-4*x^5+x^4-3*x^2+4*x-1).
a(n) = (9*3^n+4*n+1-(1+(-1)^n)*(1+4*i^n))/32, where i=sqrt(-1). - Bruno Berselli, Jul 30 2011

A193359 Decimal expansion of sum(1/floor(2^n/n),n=1..+oo).

Original entry on oeis.org

2, 1, 4, 2, 8, 6, 0, 8, 6, 3, 8, 5, 4, 9, 2, 9, 9, 5, 6, 7, 4, 9, 4, 0, 0, 0, 3, 2, 5, 0, 1, 9, 8, 8, 0, 8, 2, 0, 8, 2, 4, 3, 7, 4, 8, 3, 3, 4, 9, 9, 7, 0, 8, 5, 8, 9, 1, 9, 2, 2, 1, 8, 2, 0, 6, 3, 9, 9, 8, 2, 3, 8, 4, 8, 2, 6, 6, 0, 1, 5, 6, 5, 1, 8, 7, 1, 7, 4, 4, 6, 9, 1, 2, 0, 5, 6, 0, 0, 1, 1
Offset: 1

Author

Yalcin Aktar, Jul 24 2011

Keywords

Examples

			2.1428608638549299567494000...
		

Programs

A162845 Sum of digits of binomial(3n,n).

Original entry on oeis.org

1, 3, 6, 12, 18, 6, 24, 18, 27, 39, 18, 36, 36, 36, 42, 60, 63, 63, 78, 72, 72, 63, 72, 90, 72, 99, 90, 75, 117, 108, 90, 99, 117, 117, 99, 162, 126, 144, 153, 153, 153, 159, 150, 126, 153, 114, 144, 171, 171, 171, 162, 162, 198, 180, 186, 207, 180, 189, 180, 234, 207
Offset: 0

Author

Yalcin Aktar, Jul 14 2009

Keywords

Examples

			a(4)=sum of digits of binomial(3*4,4)=18 because binomial(3*4,4)=495.
		

Programs

  • Maple
    a := proc (n) local nn: nn := convert(binomial(3*n, n), base, 10): add(nn[j], j = 1 .. nops(nn)) end proc: seq(a(n), n = 0 .. 70); # Emeric Deutsch, Jul 29 2009

Extensions

Extended by Emeric Deutsch, Jul 29 2009

A161638 The largest number of steps in Euclid's algorithm applied to A157807(n) and A157813(n).

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 2, 3, 2, 2, 1, 1, 2, 2, 3, 3, 2, 2, 4, 3, 1, 1, 2, 2, 3, 3, 2, 2, 3, 2, 1, 1, 2, 3, 3, 2, 3, 4, 4, 3, 2, 2, 4, 3, 1, 1, 2, 2, 2, 4, 2, 3, 5, 3, 3, 3, 2, 2, 4, 4, 3, 3, 1, 1, 2, 3, 2, 3, 4, 3, 2, 2, 3, 3, 4, 3, 2, 2, 1, 1, 2, 3, 2, 3, 3, 3, 2
Offset: 1

Author

Yalcin Aktar, Jun 15 2009

Keywords

Comments

The sequence of fractions is ordered as follows: 1/1, 2/1, 1/2, 1/3, 3/1, 4/1, 3/2, 2/3, 1/4, 1/5, 5/1,...

Examples

			a(8) = 3 because the algorithm applied to the pair (2,3) needs the steps 2 = 3 x 0 + 2 then 3 = 2 x 1 + 1 and 2 = 1 x 2 + 0.
		

Programs

  • Python
    from math import gcd
    def euclid_steps(a, b):
      if b == 0:
        return 0
      else:
        return 1 + euclid_steps(b, a % b)
    for s in range(2, 100, 2):
      for i in range(1, s):
        if gcd(i, s - i) != 1: continue
        print(euclid_steps(i, s - i))
      for i in range(s, 0, -1):
        if gcd(i, s + 1 - i) != 1: continue
        print(euclid_steps(i, s + 1 - i))
    # Hiroaki Yamanouchi, Oct 06 2014

Extensions

Partially edited by R. J. Mathar, Sep 23 2009
a(1) prepended and a(12)-a(87) added by Hiroaki Yamanouchi, Oct 06 2014

A130680 Numbers n such that n = (a_1 + a_2 + ... + a_p)*(a_1^3 + a_2^3 + ... + a_p^3), where n has the decimal expansion a_1a_2...a_p.

Original entry on oeis.org

1, 1215, 3700, 11680, 13608, 87949
Offset: 1

Author

Yalcin Aktar, Jun 29 2007

Keywords

Comments

This sequence is finite and all the terms are listed. Proof: Let a_1a_2...a_p be the decimal expansion of n. Then p <= log_10(n)+1. Furthermore we have a_i <= 9, therefore (a_1 + a_2 + ... + a_p) <= 9*(log_10(n)+1) and (a_1^3 + a_2^3 + ... + a_p^3) <= 9^3*(log_10(n)+1). On the other hand, for all n > 300000 we have 9^4*(log_10(n)+1)^2 < n. A computer search confirms that we indeed have found all terms.

Examples

			87949 = (8+7+9+4+9)*(8^3+7^3+9^3+4^3+9^3).
		

Crossrefs

Cf. A115518.

Programs

  • Mathematica
    For[n = 1, n < 1000000, n++, b = IntegerDigits[n]; If[Sum[b[[i]], {i, 1, Length[b]}] * Sum[b[[i]]^3, {i, 1, Length[b]}] == n, Print[n]]]
    ffQ[n_]:=Module[{c=IntegerDigits[n]},Total[c]Total[c^3]==n]; Select[ Range[ 90000],ffQ] (* Harvey P. Dale, Oct 18 2013 *)

Extensions

Edited by Stefan Steinerberger, Jul 13 2007

A130688 Numbers n with following property: suppose n^6 = d1 d2 d3 ...dk in decimal; then d1! + d2! + ... + dk! is a square.

Original entry on oeis.org

1, 6, 747, 2802, 10000, 10256, 11876, 13875, 14623, 14710, 17117, 18090, 23919, 26569, 34282, 35402, 40515, 41202, 41850, 42195, 44684, 48396, 54698, 58509, 59293, 59644, 59900, 65502, 67795, 74004, 75320, 79593, 82677, 82713, 83402
Offset: 1

Author

Yalcin Aktar, Jun 30 2007

Keywords

Comments

Numbers n such that n^6 is in A130687.

Examples

			a(2) = 6, because 6^6 = 46656, and (4!+6!+6!+5!+6!)^(1/2) = 48 is an integer.
		

Crossrefs

Programs

  • Maple
    A061602 := proc(n) local digs ; digs := convert(n,base,10) ; add(factorial(op(i,digs)),i=1..nops(digs)) ; end: isA130687 := proc(n) RETURN(issqr(A061602(n))) ; end: isA130688 := proc(n) RETURN(isA130687(n^6)) ; end: for n from 1 to 130000 do if isA130688(n) then printf("%d, ",n) ; fi : od:
  • PARI
    for(n=1,10^5,m=n^6;s=0;while(m,s+=(m%10)!;m\=10);if(issquare(s),print1(n",")))

Extensions

Edited by R. J. Mathar and Martin Fuller, Jul 13 2007

A130687 Numbers n such that a_1! + a_2! + ... + a_m! is a square number, where a_1a_2...a_m is the decimal expansion of n.

Original entry on oeis.org

1, 14, 15, 17, 22, 40, 41, 45, 50, 51, 54, 70, 71, 102, 112, 120, 121, 123, 132, 144, 156, 165, 200, 201, 203, 210, 211, 213, 230, 231, 302, 312, 320, 321, 334, 343, 404, 414, 433, 440, 441, 457, 475, 506, 516, 547, 560, 561, 574, 605, 615
Offset: 1

Author

Yalcin Aktar, Jun 30 2007

Keywords

Examples

			1! + 4! = 4! + 1! = 5^2, hence 14 and 41 are in the sequence.
		

Programs

  • Maple
    A061602 := proc(n) local digs ; digs := convert(n,base,10) ; add(factorial(op(i,digs)),i=1..nops(digs)) ; end: isA130687 := proc(n) issqr(A061602(n)) ; end: for n from 1 to 3000 do if isA130687(n) then printf("%d, ",n) ; fi ; od ; # R. J. Mathar, Jul 12 2007
  • Mathematica
    Select[Range[755], IntegerQ[Sqrt[DigitCount[ # ][[10]]+Sum[DigitCount[ # ][[i]]*i!, {i, 1, 9}]]] &]

Formula

A010052(A061602(a(n)))=1. - R. J. Mathar, Jul 12 2007

Extensions

Edited by Stefan Steinerberger and R. J. Mathar, Jul 12 2007