cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A211015 Decimal expansion of Pi - e + gamma, where gamma is Euler's constant (or the Euler-Mascheroni constant).

Original entry on oeis.org

1, 0, 0, 0, 5, 2, 6, 4, 9, 0, 0, 3, 2, 2, 8, 0, 8, 6, 3, 7, 0, 8, 8, 6, 8, 0, 0, 2, 0, 0, 9, 2, 4, 2, 8, 1, 7, 4, 8, 2, 0, 8, 1, 6, 4, 1, 6, 1, 5, 0, 6, 9, 8, 4, 4, 8, 1, 3, 7, 4, 4, 1, 9, 9, 4, 6, 8, 6, 0, 7, 5, 0, 2, 7, 1, 0, 3, 2, 6, 0, 7, 4, 9, 9, 3, 5, 9, 9, 7, 1, 0, 1, 0, 8, 6, 9, 7, 3, 9, 0, 0, 6, 9, 3, 1
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2012

Keywords

Comments

An approximation to 1.

Examples

			1.00052649003228086370886800200...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R) - Exp(1) + EulerGamma(R); // G. C. Greubel, Sep 06 2018
  • Maple
    evalf(Pi-exp(1)+gamma, 120);  # Alois P. Heinz, Jul 10 2022
  • Mathematica
    RealDigits[Pi - E + EulerGamma, 10, 105][[1]] (* T. D. Noe, Sep 20 2012 *)
  • PARI
    default(realprecision, 100); Pi - exp(1) + Euler \\ G. C. Greubel, Sep 06 2018
    

Formula

Extensions

Extended by T. D. Noe, Sep 20 2012

A354619 Decimal expansion of Pi + e + gamma, where gamma is Euler's constant (or the Euler-Mascheroni constant).

Original entry on oeis.org

6, 4, 3, 7, 0, 9, 0, 1, 4, 6, 9, 5, 0, 3, 7, 1, 3, 3, 4, 4, 2, 9, 4, 4, 2, 9, 4, 4, 7, 1, 4, 5, 6, 7, 8, 1, 2, 9, 9, 6, 5, 7, 5, 8, 2, 9, 0, 1, 4, 9, 8, 8, 9, 9, 4, 7, 4, 7, 6, 7, 9, 4, 5, 4, 9, 1, 6, 7, 6, 0, 7, 6, 3, 4, 1, 7, 4, 2, 1, 2, 6, 4, 1, 3, 6, 3, 6
Offset: 1

Views

Author

Marco RipĂ , Jul 08 2022

Keywords

Comments

Although in 1737 Euler proved that e is irrational and in 1761 Lambert proved the same for Pi, it is not presently known whether Pi + e + gamma is rational or irrational.

Examples

			6.43709014695037133442944294471...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Pi(R) + Exp(1) + EulerGamma(R);
    
  • Mathematica
    RealDigits[Pi+E+EulerGamma, 10, 100][[1]]
  • PARI
    default(realprecision, 100); Pi + exp(1) + Euler

Formula

Equals A000796 + A001113 + A001620 = 2*e + A211015.
Showing 1-2 of 2 results.